RESUMO
Metal halide perovskites, both lead-based and lead-free variants, have emerged as highly versatile materials with widespread applications across various fields, including photovoltaics, optoelectronics, and photocatalysis. This review provides a succinct overview of the recent advancements in the utilization of lead and lead-free halide perovskites specifically in photocatalysis. We explore the diverse range of photocatalytic reactions enabled by metal halide perovskites, including organic transformations, carbon dioxide reduction, and pollutant degradation. We highlight key developments, mechanistic insights, and challenges in the field, offering our perspectives on the future research directions and potential applications. By summarizing recent findings from the literature, this review aims to provide a timely resource for researchers interested in harnessing the full potential of metal halide perovskites for sustainable and efficient photocatalytic processes.
RESUMO
Lead-free metal halide perovskites can potentially be air- and water-stable photocatalysts for organic synthesis, but there are limited studies on them for this application. Separately, machine learning (ML), a critical subfield of artificial intelligence, has played a pivotal role in identifying correlations and formulating predictions based on extensive datasets. Herein, an iterative workflow by incorporating high-throughput experimental data with ML to discover new lead-free metal halide perovskite photocatalysts for the aerobic oxidation of styrene is described. Through six rounds of ML optimization guided by SHapley Additive exPlanations (SHAP) analysis, BA2CsAg0.95Na0.05BiBr7 as a photocatalyst that afforded an 80% yield of benzoic acid under the standard conditions is identified, which is a 13-fold improvement compared to the 6% with when using Cs2AgBiBr6 as the initial photocatalyst benchmark that is started. BA2CsAg0.95Na0.05BiBr7 can tolerate various functional groups with 22 styrene derivatives, highlighting the generality of the photocatalytic properties demonstrated. Radical scavenging studies and density functional theory calculations revealed that the formation of the reactive oxygen species superoxide and singlet oxygen in the presence of BA2CsAg0.95Na0.05BiBr7 are critical for photocatalysis.