Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; : 2373308, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934257

RESUMO

Chikungunya virus has caused millions of cases worldwide over the last twenty years, with recent outbreaks in Kedougou region in the southeastern Senegal, West Africa. Genomic characterization highlights that an ongoing epidemic in Kedougou in 2023 is not due to an introduction event but caused by the re-emergence of an endemic strain evolving linearly in a sylvatic context.

2.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526209

RESUMO

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Senegal/epidemiologia , Sorogrupo , Meio Ambiente , Dengue/epidemiologia
3.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112887

RESUMO

In Senegal, the burden of dengue is increasing and expanding. As case management and traditional diagnostic techniques can be difficult to implement, rapid diagnostic tests (RDTs) deployed at point of care are ideal for investigating active outbreaks. The aim of this study was to evaluate the diagnostic performance of the Dengue NS1 and Dengue IgM/IgG RDTs on the serum/plasma samples in a laboratory setting and in the field. During laboratory evaluation, performance of the NS1 RDT was assessed using NS1 ELISA as the gold standard. Sensitivity and specificity were 88% [75-95%] and 100% [97-100%], respectively. Performance of the IgM/IG RDT was assessed using the IgM Antibody Capture (MAC) ELISA, indirect IgG, and PRNT as gold standards. The IgM and IgG test lines respectively displayed sensitivities of 94% [83-99%] and 70% [59-79%] and specificities of 91% [84-95%] and 91% [79-98%]. In the field, the Dengue NS1 RDT sensitivity and specificity was 82% [60-95%] and 75% [53-90%], respectively. The IgM and IgG test lines displayed sensitivities of 86% [42-100%] and 78% [64-88%], specificities of 85% [76-92%] and 55% [36-73%], respectively. These results demonstrate that RDTs are ideal for use in a context of high prevalence or outbreak setting and can be implemented in the absence of a confirmatory test for acute and convalescent patients.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/epidemiologia , Testes de Diagnóstico Rápido , Senegal/epidemiologia , Sensibilidade e Especificidade , Imunoglobulina M , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G , Anticorpos Antivirais , Proteínas não Estruturais Virais
4.
Sci Rep ; 12(1): 19403, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371450

RESUMO

The recent stall in the global reduction of malaria deaths has made the development of a highly effective vaccine essential. A major challenge to developing an efficacious vaccine is the extensive diversity of Plasmodium falciparum antigens. While genetic diversity plays a major role in immune evasion and is a barrier to the development of both natural and vaccine-induced protective immunity, it has been under-prioritized in the evaluation of malaria vaccine candidates. This study uses genomic approaches to evaluate genetic diversity in next generation malaria vaccine candidate PfRh5. We used targeted deep amplicon sequencing to identify non-synonymous Single Nucleotide Polymorphisms (SNPs) in PfRh5 (Reticulocyte-Binding Protein Homologue 5) in 189 P. falciparum positive samples from Southern Senegal and identified 74 novel SNPs. We evaluated the population prevalence of these SNPs as well as the frequency in individual samples and found that only a single SNP, C203Y, was present at every site. Many SNPs were unique to the individual sampled, with over 90% of SNPs being found in just one infected individual. In addition to population prevalence, we assessed individual level SNP frequencies which revealed that some SNPs were dominant (frequency of greater than 25% in a polygenomic sample) whereas most were rare, present at 2% or less of total reads mapped to the reference at the given position. Structural modeling uncovered 3 novel SNPs occurring under epitopes bound by inhibitory monoclonal antibodies, potentially impacting immune evasion, while other SNPs were predicted to impact PfRh5 structure or interactions with the receptor or binding partners. Our data demonstrate that PfRh5 exhibits greater genetic diversity than previously described, with the caveat that most of the uncovered SNPs are at a low overall frequency in the individual and prevalence in the population. The structural studies reveal that novel SNPs could have functional implications on PfRh5 receptor binding, complex formation, or immune evasion, supporting continued efforts to validate PfRh5 as an effective malaria vaccine target and development of a PfRh5 vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Plasmodium falciparum/metabolismo , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Proteínas de Transporte/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
Sci Rep ; 12(1): 17878, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284151

RESUMO

The Rapid proliferation of traditional gold mining sites in the Kedougou region has led to massive migration of people from neighbouring West African countries and the establishment of several small villages where poor hygiene and sanitation conditions exist. In this context, a Hepatitis E virus outbreak was reported in Kedougou in 2014 with several cases among the traditional mining workers. Herein, we described epidemiological and laboratory data collected during the outbreak's investigation from February 2012 to November 2014. Any suspected, contact or probable case was investigated, clinical and epidemiological data were collected. In our study, sera were collected and tested for viral RNA and anti-Hepatitis E virus (HEV) IgM. Archived serum samples from Kedougou were retrospectively screened by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). A total of 65 water samples collected from ponds and wells surrounding gold panners' sites and habitats and 75 tissues samples from rats captured in the environment of traditional gold mining sites were also tested. A total of 1617 sera were collected from 698 suspected cases, 862 contacts and 57 persons with missing information. The median age was 20 (1-88 years-old) and the sex ratio was 1.72. An overall rate of 64.62% (1045/1617) of these patients tested positive for HEV with a high case fatality rate in pregnant women. All water samples and animal tissues tested negative for HEV. Our data help not only determining of the beginning of the HEV outbreak to March 2012, but also identifying risk factors associated to its emergence. However, there is a need to implement routine diagnosis, surveillance and training of health personnel in order to reduce mortality especially among pregnant women. In addition, further studies are needed to identify the virus reservoir and environmental risk factors for HEV in the Kedougou region.


Assuntos
Vírus da Hepatite E , Hepatite E , Feminino , Humanos , Gravidez , Ratos , Animais , RNA Viral/genética , Estudos Retrospectivos , Senegal , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , Imunoglobulina M , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Ouro , Água
6.
Viruses ; 14(10)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298828

RESUMO

We investigated the epidemiology of measles and rubella infections in Senegal based on data from twelve consecutive years of laboratory-based surveillance (2010−2021) and conducted phylogenetic analyses of circulating measles viruses. Sera from measles-suspected cases were collected and tested for measles and rubella-specific IgM antibodies using enzyme-linked immunosorbent assays (ELISA). Throat swabs were collected from patients with clinically diagnosed measles for confirmation by reverse-transcription polymerase chain reaction (RT-PCR) and viral genotyping. Among 8082 laboratory-tested specimens from measles-suspected cases, serological evidence of measles and rubella infection was confirmed in 1303/8082 (16.1%) and 465/6714 (6.9%), respectively. The incidence of rubella is now low­0.8 (95% CI 0.4−1.3) cases per million people in 2021­whereas progress towards measles pre-elimination targets (<1.0 case per million people per year) appears to have stalled; there were 10.8 (95% CI 9.3−12.5) cases per million people in 2021. Phylogenetic analyses revealed that all Senegalese measles strains belonged to genotype B3. The rubella virus sequence obtained in this study was consistent with genotype 1C. Our national surveillance data suggest that despite their low incidence both measles and rubella remain endemic in Senegal with a concerning stagnation in the decline of measles infections that represents a significant challenge to the goal of regional elimination.


Assuntos
Sarampo , Rubéola (Sarampo Alemão) , Humanos , Epidemiologia Molecular , Filogenia , Incidência , Senegal/epidemiologia , Rubéola (Sarampo Alemão)/epidemiologia , Sarampo/epidemiologia , Vírus da Rubéola/genética , Vírus do Sarampo/genética , Anticorpos Antivirais , Genótipo , Imunoglobulina M
7.
Am J Trop Med Hyg ; 104(6): 2224-2228, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33939633

RESUMO

Herpesviruses are known to cause a diversity of clinical syndromes, ranging from minor cutaneous lesions to life-threatening illnesses, especially in immunocompromised hosts. Here, we investigate retrospectively the contribution of five human herpesviruses, including herpes simplex virus Cytomegalovirus (CMV), the Epstein-Barr virus (EBV), human herpesvirus 6, and varicella zoster virus (VZV) in serum samples collected from measles suspected patients with at least fever and rash. Sera specimens were first tested for serological evidence of measles and rubella virus infection by ELISA, and DNA extracted from an aliquot of each clinical specimen for molecular detection of human herpes viruses by RT-qPCR. A total of 3,358 specimens have been collected and tested for herpes viruses. Nearly half of the overall suspected cases were children younger than 5 years (49.4%). Of the 3,358 sera tested by ELISA, 227 (6.7%) were measles laboratory confirmed and 152 (4.5%) rubella laboratory confirmed. Herpes viruses were detected in 1763 (52.5%), and VZV was the most common with 44.3%, followed by EBV with 10.7%. Coinfections were found in 352 (20%) cases, and the most common co-detections were VZV/EBV or VZV/CMV (169 and 81 cases, respectively). A clear seasonal pattern of VZV, EBV, and CMV identification was observed, with the highest incidence between February and April each year. Results of this investigation provide more insights into cutaneous rash syndrome etiologies in patients sampled in the framework of measles/rubella surveillance in Senegal, which is useful for the guidance of both case definition revision and clinical practice as well as for public health policy.


Assuntos
DNA Viral/genética , Infecções por Herpesviridae/sangue , Herpesviridae/genética , Herpesvirus Humano 4/genética , Sarampo/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesviridae/classificação , Infecções por Herpesviridae/classificação , Infecções por Herpesviridae/virologia , Humanos , Lactente , Masculino , Sarampo/virologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Senegal , Adulto Jovem
8.
Pathogens ; 10(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668365

RESUMO

West Nile virus (WNV), belonging to the Flaviviridae family, causes a mosquito-borne disease and shows great genetic diversity, with at least eight different lineages. The Koutango lineage of WNV (WN-KOUTV), mostly associated with ticks and rodents in the wild, is exclusively present in Africa and shows evidence of infection in humans and high virulence in mice. In 2016, in a context of Rift Valley fever (RVF) outbreak in Niger, mosquitoes, biting midges and sandflies were collected for arbovirus isolation using cell culture, immunofluorescence and RT-PCR assays. Whole genome sequencing and in vivo replication studies using mice were later conducted on positive samples. The WN-KOUTV strain was detected in a sandfly pool. The sequence analyses and replication studies confirmed that this strain belonged to the WN-KOUTV lineage and caused 100% mortality of mice. Further studies should be done to assess what genetic traits of WN-KOUTV influence this very high virulence in mice. In addition, given the risk of WN-KOUTV to infect humans, the possibility of multiple vectors as well as birds as reservoirs of WNV, to spread the virus beyond Africa, and the increasing threats of flavivirus infections in the world, it is important to understand the potential of WN-KOUTV to emerge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA