Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 26(12): 2871-2881, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32066626

RESUMO

PURPOSE: Glioblastoma multiforme is a highly aggressive form of brain cancer whose location, tendency to infiltrate healthy surrounding tissue, and heterogeneity significantly limit survival, with scant progress having been made in recent decades. EXPERIMENTAL DESIGN: 123I-MAPi (Iodine-123 Meitner-Auger PARP1 inhibitor) is a precise therapeutic tool composed of a PARP1 inhibitor radiolabeled with an Auger- and gamma-emitting iodine isotope. Here, the PARP inhibitor, which binds to the DNA repair enzyme PARP1, specifically targets cancer cells, sparing healthy tissue, and carries a radioactive payload within reach of the cancer cells' DNA. RESULTS: The high relative biological efficacy of Auger electrons within their short range of action is leveraged to inflict DNA damage and cell death with high precision. The gamma ray emission of 123I-MAPi allows for the imaging of tumor progression and therapy response, and for patient dosimetry calculation. Here we demonstrated the efficacy and specificity of this small-molecule radiotheranostic in a complex preclinical model. In vitro and in vivo studies demonstrate high tumor uptake and a prolonged survival in mice treated with 123I-MAPi when compared with vehicle controls. Different methods of drug delivery were investigated to develop this technology for clinical applications, including convection enhanced delivery and intrathecal injection. CONCLUSIONS: Taken together, these results represent the first full characterization of an Auger-emitting PARP inhibitor which demonstrate a survival benefit in mouse models of GBM and confirm the high potential of 123I-MAPi for clinical translation.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Radioisótopos do Iodo/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Radioterapia/métodos , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Proliferação de Células , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
EJNMMI Res ; 8(1): 87, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30155674

RESUMO

BACKGROUND: The folate receptor α (FRα)-targeting antibody-drug conjugate (ADC), IMGN853, shows great antitumor activity against FRα-expressing tumors in vivo, but patient selection and consequently therapy outcome are based on immunohistochemistry. The aim of this study is to develop an antibody-derived immuno-PET imaging agent strategy for targeting FRα in ovarian cancer as a predictor of treatment success. METHODS: We developed [89Zr]Zr-DFO-M9346A, a humanized antibody-based radiotracer targeting tumor-associated FRα in the preclinical setting. [89Zr]Zr-DFO-M9346A's binding ability was tested in an in vitro uptake assay using cell lines with varying FRα expression levels. The diagnostic potential of [89Zr]Zr-M9346A was evaluated in KB and OV90 subcutaneous xenografts. Following intravenous injection of [89Zr]Zr-DFO-M9346A (~90 µCi, 50 µg), PET imaging and biodistribution studies were performed. We determined the blood half-life of [89Zr]Zr-DFO-M9346A and compared it to the therapeutic, radioiodinated ADC [131I]-IMGN853. Finally, in vivo studies using IMG853 as a therapeutic, paired with [89Zr]Zr-DFO-M9346A as a companion diagnostic were performed using OV90 xenografts. RESULTS: DFO-M9346A was labeled with Zr-89 at 37 °C within 60 min and isolated in labeling yields of 85.7 ± 5.7%, radiochemical purities of 98.0 ± 0.7%, and specific activities of 3.08 ± 0.43 mCi/mg. We observed high specificity for binding FRα positive cells in vitro. For PET and biodistribution studies, [89Zr]Zr-M9346A displayed remarkable in vivo performance in terms of excellent tumor uptake for KB and OV xenografts (45.8 ± 29.0 %IA/g and 26.1 ± 7.2 %IA/g), with low non-target tissue uptake in other organs such as kidneys (4.5 ± 1.2 %IA/g and 4.3 ± 0.7 %IA/g). A direct comparison of the blood half life of [89Zr]Zr-M9346A and [131I]-IMGN853 corroborated the equivalency of the radiopharmaceutical and the ADC, paving the way for a companion PET imaging study. CONCLUSIONS: We developed a new folate receptor-targeted 89Zr-labeled PET imaging agent with excellent pharmacokinetics in vivo. Good tumor uptake in subcutaneous KB and OV90 xenografts were obtained, and ADC therapy studies were performed with the precision predictor.

3.
J Nucl Med ; 59(8): 1225-1233, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29572254

RESUMO

The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. Methods: We synthesized an 131I-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of 131I-PARPi (PARPi is PARP inhibitor). Results:131I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration-approved PARP inhibitor AZD-2281. In vitro studies have shown that 131I-PARPi and AZD-2281 share similar pharmacologic profiles. 131I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, P < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of 131I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Conclusion: Our results demonstrate 131I-PARPi's high potential as a therapeutic and highlight PARP's relevance as a target for radionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.


Assuntos
Glioblastoma/radioterapia , Terapia de Alvo Molecular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Glioblastoma/patologia , Camundongos , Radiometria , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Proteína Supressora de Tumor p53/metabolismo
4.
Dalton Trans ; 46(35): 11925-11941, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28850133

RESUMO

The relationship between cis-trans isomerism and anticancer activity has been mainly addressed for square-planar metal complexes, in particular, for platinum(ii), e.g., cis- and trans-[PtCl2(NH3)2], and a number of related compounds, of which, however, only cis-counterparts are in clinical use today. For octahedral metal complexes, this effect of geometrical isomerism on anticancer activity has not been investigated systematically, mainly because the relevant isomers are still unavailable. An example of such an octahedral complex is trans-[RuCl4(Hind)2]-, which is in clinical trials now as its indazolium (KP1019) or sodium salt (NKP1339), but the corresponding cis-isomers remain inaccessible. We report the synthesis of Na[cis-OsIIICl4(κN2-1H-ind)2]·(Na[1]) suggesting a route to the cis-isomer of NKP1339. The procedure involves heating (H2ind)[OsIVCl5(κN1-2H-ind)] in a high boiling point organic solvent resulting in an Anderson rearrangement with the formation of cis-[OsIVCl4(κN2-1H-ind)2] ([1]) in high yield. The transformation is accompanied by an indazole coordination mode switch from κN1 to κN2 and stabilization of the 1H-indazole tautomer. Fully reversible spectroelectrochemical reduction of [1] in acetonitrile at 0.46 V vs. NHE is accompanied by a change in electronic absorption bands indicating the formation of cis-[OsIIICl4(κN2-1H-ind)2]- ([1]-). Chemical reduction of [1] in methanol with NaBH4 followed by addition of nBu4NCl afforded the osmium(iii) complex nBu4N[cis-OsIIICl4(κN2-1H-ind)2] (nBu4N[1]). A metathesis reaction of nBu4N[1] with an ion exchange resin led to the isolation of the water-soluble salt Na[1]. The X-ray diffraction crystal structure of [1]·Me2CO was determined and compared with that of trans-[OsIVCl4(κN2-1H-ind)2]·2Me2SO (2·2Me2SO), also prepared in this work. EPR spectroscopy was performed on the OsIII complexes and the results were analyzed by ligand-field and quantum chemical theories. We furthermore assayed effects of [1] and Na[1] on cell viability and proliferation in comparison with trans-[OsIVCl4(κN1-2H-ind)2] [3] and cisplatin and found a strong reduction of cell viability at concentrations between 30 and 300 µM in different cancer cell lines (HT29, H446, 4T1 and HEK293). HT-29 cells are less sensitive to cisplatin than 4T1 cells, but more sensitive to [1] and Na[1], as shown by decreased proliferation and viability as well as an increased late apoptotic/necrotic cell population.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Indazóis/química , Compostos Organometálicos/química , Osmio/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Células HEK293 , Células HT29 , Humanos , Indazóis/farmacologia , Isomerismo , Conformação Molecular , Compostos Organometálicos/farmacologia , Teoria Quântica , Rutênio/química , Compostos de Rutênio
5.
Proc Natl Acad Sci U S A ; 114(36): E7441-E7449, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827325

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL.


Assuntos
Linfonodos/patologia , Linfoma Difuso de Grandes Células B/patologia , Animais , Linhagem Celular Tumoral , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem
6.
J Vis Exp ; (121)2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287606

RESUMO

Inspired by the success of previous cancer nanomedicines in the clinic, researchers have generated a large number of novel formulations in the past decade. However, only a small number of nanomedicines have been approved for clinical use, whereas the majority of nanomedicines under clinical development have produced disappointing results. One major obstacle to the successful clinical translation of new cancer nanomedicines is the lack of an accurate understanding of their in vivo performance. This article features a rigorous procedure to characterize the in vivo behavior of nanomedicines in tumor-bearing mice at systemic, tissue, single-cell, and subcellular levels via the integration of positron emission tomography-computed tomography (PET-CT), radioactivity quantification methods, flow cytometry, and fluorescence microscopy. Using this approach, researchers can accurately evaluate novel nanoscale formulations in relevant mouse models of cancer. These protocols may have the ability to identify the most promising cancer nanomedicines with high translational potential or to aid in the optimization of cancer nanomedicines for future translation.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/terapia , Nanomedicina/métodos , Neoplasias Cutâneas/terapia , Animais , Melanoma Experimental/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Cutâneas/diagnóstico
7.
Nucl Med Biol ; 48: 9-15, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28157626

RESUMO

RATIONALE: Ataxia telangiectasia and Rad3-related (ATR) threonine serine kinase is one of the key elements in orchestrating the DNA damage response (DDR). As such, inhibition of ATR can amplify the effects of chemo- and radiation-therapy, and several ATR inhibitors (ATRi) have already undergone clinical testing in cancer. For more accurate patient selection, monitoring and staging, real-time in vivo imaging of ATR could be invaluable; the development of appropriate imaging agents has remained a major challenge. METHODS: 3-amino-N-(4-[18F]phenyl)-6-(4-(methylsulfonyl)phenyl)pyrazine-2-carboxamide ([18F]-ATRi), a close analogue of Ve-821, (a clinical ATRi candidate), was readily accomplished similarly to already established synthetic procedures. Structurally, 18F was introduced at the 4-position of the aromatic ring of Ve-821 for generating a labeled ATR inhibitor. In vitro experiments were conducted in U251 MG glioblastoma cell lines and ex vivo biodistribution were performed in subcutaneous U251 MG xenograft bearing athymic nude mice following microPET imaging. RESULTS: [18F]-ATRi has a similar pharmacokinetic profile to that of Ve-821. Using an U251 MG glioblastoma mouse model, we evaluated the in vivo binding efficiency of [18F]-ATRi. Blood and tumor showed a statistically significant difference between mice injected with only the probe or following blocking experiment with Ve-821 (1.48±0.40%ID/g vs. 0.46±0.12%ID/g in tumor and 1.85±0.47%ID/g vs. 0.84±0.3%ID/g in blood respectively). CONCLUSIONS: [18F]-ATRi represents the first 18F positron emission tomography (PET) ATR imaging agent, and is designed on a low nanomolar and clinically relevant ATR inhibitor.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/química , Pirazinas/química , Sulfonas/química , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirazinas/metabolismo , Pirazinas/farmacocinética , Traçadores Radioativos , Radioquímica , Sulfonas/metabolismo , Sulfonas/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA