Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ACS Med Chem Lett ; 15(6): 965-971, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894922

RESUMO

2-Arachidonoyl glycerol (2-AG) is the principal endogenously produced ligand for the cannabinoid CB1 and CB2 receptors (CBRs). The lack of potent and efficacious 2-AG ligands with resistance against metabolizing enzymes represents a significant void in the armamentarium of research tools available for studying eCB system molecular constituents and their function. Herein we report the first endocannabinoid glyceride templates with remarkably high potency and efficacy at CBRs. Two of our lead chiral 2-AG analogs, namely, (13S)- and (13R)-Me-2-AGs, potently inhibit excitatory neurotransmission via CB1 while they are endowed with excellent resistance to the oxidizing enzyme COX-2. Our SAR results are supported by docking studies of the key analog and 2-AG on the crystal structures of CB1.

2.
ACS Chem Biol ; 19(4): 866-874, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38598723

RESUMO

The advent of ultra-large libraries of drug-like compounds has significantly broadened the possibilities in structure-based virtual screening, accelerating the discovery and optimization of high-quality lead chemotypes for diverse clinical targets. Compared to traditional high-throughput screening, which is constrained to libraries of approximately one million compounds, the ultra-large virtual screening approach offers substantial advantages in both cost and time efficiency. By expanding the chemical space with compounds synthesized from easily accessible and reproducible reactions and utilizing a large, diverse set of building blocks, we can enhance both the diversity and quality of the discovered lead chemotypes. In this study, we explore new chemical spaces using reactions of sulfur(VI) fluorides to create a combinatorial library consisting of several hundred million compounds. We screened this virtual library for cannabinoid type II receptor (CB2) antagonists using the high-resolution structure in conjunction with a rationally designed antagonist, AM10257. The top-predicted compounds were then synthesized and tested in vitro for CB2 binding and functional antagonism, achieving an experimentally validated hit rate of 55%. Our findings demonstrate the effectiveness of reliable reactions, such as sulfur fluoride exchange, in diversifying ultra-large chemical spaces and facilitate the discovery of new lead compounds for important biological targets.


Assuntos
Ensaios de Triagem em Larga Escala , Receptor CB2 de Canabinoide , Bibliotecas de Moléculas Pequenas , Ligantes , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Descoberta de Drogas/métodos , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/efeitos dos fármacos
3.
Nature ; 616(7958): 673-685, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37100941

RESUMO

Computer-aided drug discovery has been around for decades, although the past few years have seen a tectonic shift towards embracing computational technologies in both academia and pharma. This shift is largely defined by the flood of data on ligand properties and binding to therapeutic targets and their 3D structures, abundant computing capacities and the advent of on-demand virtual libraries of drug-like small molecules in their billions. Taking full advantage of these resources requires fast computational methods for effective ligand screening. This includes structure-based virtual screening of gigascale chemical spaces, further facilitated by fast iterative screening approaches. Highly synergistic are developments in deep learning predictions of ligand properties and target activities in lieu of receptor structure. Here we review recent advances in ligand discovery technologies, their potential for reshaping the whole process of drug discovery and development, as well as the challenges they encounter. We also discuss how the rapid identification of highly diverse, potent, target-selective and drug-like ligands to protein targets can democratize the drug discovery process, presenting new opportunities for the cost-effective development of safer and more effective small-molecule treatments.


Assuntos
Simulação por Computador , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Ligantes , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
4.
Nature ; 601(7893): 452-459, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912117

RESUMO

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Assuntos
Algoritmos , Técnicas de Química Combinatória , Descoberta de Drogas , Bibliotecas Digitais , Ligantes , Simulação de Acoplamento Molecular , Quinases Associadas a rho
5.
Biomolecules ; 10(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287369

RESUMO

Cysteinyl leukotriene G protein-coupled receptors, CysLT1R and CysLT2R, regulate bronchoconstrictive and pro-inflammatory effects and play a key role in allergic disorders, cardiovascular diseases, and cancer. CysLT1R antagonists have been widely used to treat asthma disorders, while CysLT2R is a potential target against uveal melanoma. However, very few selective antagonist chemotypes for CysLT receptors are available, and the design of such ligands has proved to be challenging. To overcome this obstacle, we took advantage of recently solved crystal structures of CysLT receptors and an ultra-large Enamine REAL library, representing a chemical space of 680 M readily available compounds. Virtual ligand screening employed 4D docking models comprising crystal structures of CysLT1R and CysLT2R and their corresponding ligand-optimized models. Functional assessment of the candidate hits yielded discovery of five novel antagonist chemotypes with sub-micromolar potencies and the best Ki = 220 nM at CysLT1R. One of the hits showed inverse agonism at the L129Q constitutively active mutant of CysLT2R, with potential utility against uveal melanoma.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Receptores de Leucotrienos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores de Leucotrienos/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA