Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mod Pathol ; 36(2): 100014, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853786

RESUMO

Adenocarcinomas of the luminal gastrointestinal tract and pancreatobiliary system often show histologic and immunohistochemical overlap, making delineation of the primary site in a metastatic setting difficult. Previous studies have shown that site-specific missense mutations in the oncogene KRAS could be used in conjunction with immunohistochemistry to differentiate metastatic pancreatic adenocarcinoma from primary lung adenocarcinoma. In this study, we assessed the patterning of KRAS mutations across sites in the gastrointestinal and pancreatobiliary system. By integrating sequencing data from 44 separate studies, we assessed 2523 KRAS mutations in 7382 distinct cases of adenocarcinoma, including those from the esophagus, stomach, ampulla, biliary system, pancreas, and colon. We found that gastrointestinal adenocarcinomas demonstrate a marked regional variation in the frequency of KRAS mutations, with the most frequent KRAS mutation observed in pancreatic adenocarcinoma (up to 94.9%), whereas the frequency is much lower in adenocarcinomas from the esophagus and stomach (5.4% and 8.7%, respectively). Intriguingly, the pattern of missense mutations showed site specificity as well, with c.35G>T (p.G12V) and c.34G>C (p.G12R) mutations enriched in pancreatic primaries and codon 13 and non-codon 12/13 alterations enriched in gastric primaries (specificity of 98.9% and 93.2%, respectively, with a negative predictive value of 93.6% and 92.93% against pancreatic adenocarcinoma). Furthermore, we found that esophageal and gastric adenocarcinomas show an enrichment in transitional mutations, whereas other sites showed an equal distribution. Importantly, the examination of a validation cohort from our own institution revealed similar trends. These findings indicate that, in addition to providing therapeutic and diagnostic information, KRAS mutational analysis may also prove useful in delineating the site of origin in gastrointestinal adenocarcinomas that share morphologic and immunohistochemical overlap. Moreover, transitional mutations are more frequent in esophageal and gastric adenocarcinomas, reiterating the role of chronic inflammation in the pathogenesis of foregut adenocarcinomas.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Mutação , Neoplasias Gástricas/genética
2.
Sci Rep ; 12(1): 19309, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369211

RESUMO

Acetaminophen is the most common cause of acute drug-induced liver injury in the United States. However, research into the mechanisms of acetaminophen toxicity and the development of novel therapeutics is hampered by the lack of robust, reproducible, and cost-effective model systems. Herein, we characterize a novel Drosophila-based model of acetaminophen toxicity. We demonstrate that acetaminophen treatment of Drosophila results in similar pathophysiologic alterations as those observed in mammalian systems, including a robust production of reactive oxygen species, depletion of glutathione, and dose-dependent mortality. Moreover, these effects are concentrated in the Drosophila fat body, an organ analogous to the mammalian liver. Utilizing this system, we interrogated the influence of environmental factors on acetaminophen toxicity which has proven difficult in vertebrate models due to cost and inter-individual variability. We find that both increasing age and microbial depletion sensitize Drosophila to acetaminophen toxicity. These environmental influences both alter oxidative stress response pathways in metazoans. Indeed, genetic and pharmacologic manipulations of the antioxidant response modify acetaminophen toxicity in our model. Taken together, these data demonstrate the feasibility of Drosophila for the study of acetaminophen toxicity, bringing with it an ease of genetic and microbiome manipulation, high-throughput screening, and availability of transgenic animals.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Drosophila/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo
3.
Cell Rep ; 40(13): 111409, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170839

RESUMO

The intestinal mucosa exists in a state of "physiologic hypoxia," where oxygen tensions are markedly lower than those in other tissues. Intestinal epithelial cells (IECs) have evolved to maintain homeostasis in this austere environment through oxygen-sensitive transcription factors, including hypoxia-inducible factors (HIFs). Using an unbiased chromatin immunoprecipitation (ChIP) screen for HIF-1 targets, we identify autophagy as a major pathway induced by hypoxia in IECs. One important function of autophagy is to defend against intracellular pathogens, termed "xenophagy." Analysis reveals that HIF is a central regulator of autophagy and that in vitro infection of IECs with Salmonella Typhimurium results in induction of HIF transcriptional activity that tracks with the clearance of intracellular Salmonella. Work in vivo demonstrates that IEC-specific deletion of HIF compromises xenophagy and exacerbates bacterial dissemination. These results reveal that the interaction between hypoxia, HIF, and xenophagy is an essential innate immune component for the control of intracellular pathogens.


Assuntos
Macroautofagia , Infecções por Salmonella , Humanos , Hipóxia/metabolismo , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Infecções por Salmonella/metabolismo , Fatores de Transcrição/metabolismo
5.
Inflamm Bowel Dis ; 28(4): 502-513, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34613372

RESUMO

We have demonstrated that neuropeptide Y (NPY) can regulate pro-inflammatory signaling in the gut via cross-talk with the pro-inflammatory cytokine tumor necrosis factor (TNF). Here, we investigated if selective blocking of NPY receptors, NPY1R or NPY2R, using small molecule non-peptide antagonists (BIBP-3222 for NPY1R and BIIE-0246 for NPY2R) in the colon could attenuate intestinal inflammation by lowering TNF levels (BIBP - N-[(1R)]-4-[(Aminoiminomethyl)amino-1-[[[(4-hydroxyphenyl)methyl]amino]carbonyl]butyl-α-phenylbenzeneacetamide; BIIE - N-[(1S)-4-[(Aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide). Colitis was induced using dextran sodium sulfate in drinking water for 7 days, or by adoptive T-cell transfer in RAG-/- mice. Colonic biopsies from healthy subjects (n = 10) and IBD patients (n = 34, UC = 20, CD = 14) were cultured ex vivo in presence or absence of NPY antagonists (100 µM, 20 h), and cytokine release into culture supernatants was measured by ELISA. Intracolonic administration of BIBP (but not BIIE) significantly reduced clinical, endoscopic, and histological scores, and serum TNF, interleukin (IL)-6, and IL-12p70 in DSS colitis; it also significantly attenuated histological damage and serum IL-6 in T-cell colitis (P < .05). Intracolonic administration of BIBP significantly reduced TNF and interferon (IFN)-γ release from UC biopsies, whereas BIIE downregulated only IFN-γ (P < .05). BIBP significantly reduced TNF and interferon (IFN)-γ release from UC biopsies, whereas BIIE downregulated only IFN-γ (P < .05). Our data suggest a promising therapeutic value for NPY1R inhibition in alleviating intestinal inflammation in UC, possibly as enemas to IBD patients.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Animais , Biópsia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos
6.
Cell Mol Gastroenterol Hepatol ; 12(4): 1311-1327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111601

RESUMO

BACKGROUND & AIMS: In colorectal cancer, approximately 95% of patients are refractory to immunotherapy because of low antitumor immune responses. Therefore, there is an exigent need to develop treatments that increase antitumor immune responses and decrease tumor burden to enhance immunotherapy. METHODS: The gut microbiome has been described as a master modulator of immune responses. We administered the human commensal, Lactobacillus rhamnosus GG (LGG), to mice and characterized the changes in the gut immune landscape. Because the presence of lactobacilli in the gut microbiome has been linked with decreased tumor burden and antitumor immune responses, we also supplemented a genetic and a chemical model of murine intestinal cancer with LGG. For clinical relevance, we therapeutically administered LGG after tumors had formed. We also tested for the requirement of CD8 T cells in LGG-mediated modulation of gut tumor burden. RESULTS: We detected increased colonic CD8 T-cell responses specifically in LGG-supplemented mice. The CD8 T-cell induction was dependent on dendritic cell activation mediated via Toll-like receptor-2, thereby describing a novel mechanism in which a member of the human microbiome induces an intestinal CD8 T-cell response. We also show that LGG decreased tumor burden in the murine gut cancer models by a CD8 T-cell-dependent manner. CONCLUSIONS: These data support the potential use of LGG to augment antitumor immune responses in colorectal cancer patients and ultimately for increasing the breadth and efficacy of immunotherapy.


Assuntos
Imunidade , Imunomodulação , Lacticaseibacillus rhamnosus/imunologia , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Colo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Probióticos/administração & dosagem , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Carga Tumoral
7.
Transfusion ; 61(6): 1740-1748, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34041759

RESUMO

BACKGROUND: While convalescent plasma (CP) may benefit patients with COVID-19, fundamental questions remain regarding its efficacy, including the components of CP that may contribute to its therapeutic effect. Most current serological evaluation of CP relies on examination of total immunoglobulin or IgG-specific anti-SARS-CoV-2 antibody levels. However, IgA antibodies, which also circulate and are secreted along the respiratory mucosa, represent a relatively uncharacterized component of CP. STUDY DESIGN AND METHODS: Residual samples from patients and CP donors were assessed for IgM, IgG, and IgA anti-SARS-CoV-2 antibody titers against the receptor-binding domain responsible for viral entry. Symptom onset was obtained by chart review. RESULTS: Increased IgA anti-SARS-CoV-2 antibody levels correlated with clinical improvement and viral clearance in an infant with COVID-19, prompting a broader examination of IgA levels among CP donors and hospitalized patients. Significant heterogeneity in IgA levels was observed among CP donors, which correlated weakly with IgG levels or the results of a commonly employed serological test. Unlike IgG and IgM, IgA levels were also more likely to be variable in hospitalized patients and this variability persisted in some patients >14 days following symptom onset. IgA levels were also less likely to be sustained than IgG levels following subsequent CP donation. CONCLUSIONS: IgA levels can be very heterogenous among CP donors and hospitalized patients and do not necessarily correlate with commonly employed testing platforms. Examining isotype levels in CP and COVID-19 patients may allow for a tailored approach when seeking to fill specific gaps in humoral immunity.


Assuntos
COVID-19/imunologia , COVID-19/terapia , Convalescença , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Doadores de Sangue , Síndrome de Down/complicações , Síndrome de Down/imunologia , Síndrome de Down/terapia , Feminino , Defeitos dos Septos Cardíacos/complicações , Defeitos dos Septos Cardíacos/imunologia , Defeitos dos Septos Cardíacos/terapia , Humanos , Imunidade Humoral/imunologia , Imunização Passiva/métodos , Imunoglobulina A/análise , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Lactente , Estudos Retrospectivos , Testes Sorológicos , Estados Unidos , Soroterapia para COVID-19
8.
Cell Metab ; 31(5): 956-968.e5, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32213347

RESUMO

Many studies have suggested a role for gut-resident microbes (the "gut microbiome") in modulating host health; however, the mechanisms by which they impact systemic physiology remain largely unknown. In this study, metabolomic and transcriptional profiling of germ-free and conventionalized mouse liver revealed an upregulation of the Nrf2 antioxidant and xenobiotic response in microbiome-replete animals. Using a Drosophila-based screening assay, we identified members of the genus Lactobacillus capable of stimulating Nrf2. Indeed, the human commensal Lactobacillus rhamnosus GG (LGG) potently activated Nrf2 in the Drosophila liver analog and the murine liver. This activation was sufficient to protect against two models of oxidative liver injury, acetaminophen overdose and acute ethanol toxicity. Characterization of the portal circulation of LGG-treated mice by tandem mass spectrometry identified a small molecule activator of Nrf2, 5-methoxyindoleacetic acid, produced by LGG. Taken together, these data demonstrate a mechanism by which intestinal microbes modulate hepatic susceptibility to oxidative injury.


Assuntos
Lacticaseibacillus rhamnosus/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Drosophila , Microbioma Gastrointestinal , Células Hep G2 , Humanos , Fígado/lesões , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Oxirredução , Células Tumorais Cultivadas
9.
Am J Pathol ; 189(11): 2221-2232, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472109

RESUMO

Recent evidence has demonstrated that reactive oxygen (eg, hydrogen peroxide) can activate host cell signaling pathways that function in repair. We show that mice deficient in their capacity to generate reactive oxygen by the NADPH oxidase 2 holoenzyme, an enzyme complex highly expressed in neutrophils and macrophages, have disrupted capacity to orchestrate signaling events that function in mucosal repair. Similar observations were made for mice after neutrophil depletion, pinpointing this cell type as the source of the reactive oxygen driving oxidation-reduction protein signaling in the epithelium. To simulate epithelial exposure to high levels of reactive oxygen produced by neutrophils and gain new insight into this oxidation-reduction signaling, epithelial cells were treated with hydrogen peroxide, biochemical experiments were conducted, and a proteome-wide screen was performed using isotope-coded affinity tags to detect proteins oxidized after exposure. This analysis implicated signaling pathways regulating focal adhesions, cell junctions, and maintenance of the cytoskeleton. These pathways are also known to act via coordinated phosphorylation events within proteins that constitute the focal adhesion complex, including focal adhesion kinase and Crk-associated substrate. We identified the Rho family small GTP-binding protein Ras-related C3 botulinum toxin substrate 1 and p21 activated kinases 2 as operational in these signaling and localization pathways. These data support the hypothesis that reactive oxygen species from neutrophils can orchestrate epithelial cell-signaling events functioning in intestinal repair.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Intestinos/lesões , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/fisiologia
10.
J Clin Invest ; 129(8): 3224-3235, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264974

RESUMO

Epithelial barrier dysfunction is a significant factor in many allergic diseases, including eosinophilic esophagitis (EoE). Infiltrating leukocytes and tissue adaptations increase metabolic demands and decrease oxygen availability at barrier surfaces. Understanding of how these processes impact barrier is limited, particularly in allergy. Here, we identified a regulatory axis whereby the oxygen-sensing transcription factor HIF-1α orchestrated epithelial barrier integrity, selectively controlling tight junction CLDN1 (claudin-1). Prolonged experimental hypoxia or HIF1A knockdown suppressed HIF-1α-dependent claudin-1 expression and epithelial barrier function, as documented in 3D organotypic epithelial cultures. L2-IL5OXA mice with EoE-relevant allergic inflammation displayed localized eosinophil oxygen metabolism, tissue hypoxia, and impaired claudin-1 barrier via repression of HIF-1α/claudin-1 signaling, which was restored by transgenic expression of esophageal epithelial-targeted stabilized HIF-1α. EoE patient biopsy analysis identified a repressed HIF-1α/claudin-1 axis, which was restored via pharmacologic HIF-1α stabilization ex vivo. Collectively, these studies reveal HIF-1α's critical role in maintaining barrier and highlight the HIF-1α/claudin-1 axis as a potential therapeutic target for EoE.


Assuntos
Claudina-1/metabolismo , Esofagite Eosinofílica/metabolismo , Células Epiteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Adolescente , Adulto , Animais , Linhagem Celular Transformada , Criança , Pré-Escolar , Claudina-1/genética , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Transgênicos , Estabilidade Proteica , Junções Íntimas/genética , Junções Íntimas/patologia
11.
Methods Mol Biol ; 1982: 329-337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172482

RESUMO

Reactive oxygen species (ROS) are potent signaling molecules with critical roles in cellular pathology and homeostasis. They are produced in all cell types via a diverse array of cellular machinery, giving rise to an equally diverse repertoire of molecular effects. These range from cytotoxic killing of microbes to alteration of the cellular transcriptional response to stress. Despite their importance, research into ROS has been difficult given their inherent instability and transient signaling properties. Herein we describe methods for the use of the redox-sensitive probe hydro-Cy3 for the detection and quantification of ROS both in vitro and in vivo.


Assuntos
Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Molecular , Espécies Reativas de Oxigênio/metabolismo , Animais , Carbocianinas/química , Permeabilidade da Membrana Celular , Corantes Fluorescentes/química , Camundongos , Microscopia Confocal , Imagem Molecular/métodos , Estrutura Molecular , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo
12.
Gastroenterology ; 157(1): 179-192.e2, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30930024

RESUMO

BACKGROUND & AIMS: Reduced gastrointestinal (GI) motility is a feature of disorders associated with intestinal dysbiosis and loss of beneficial microbes. It is not clear how consumption of beneficial commensal microbes, marketed as probiotics, affects the enteric nervous system (ENS). We studied the effects of the widely used probiotic and the commensal Lactobacillus rhamnosus GG (LGG) on ENS and GI motility in mice. METHODS: Conventional and germ free C57B6 mice were gavaged with LGG and intestinal tissues were collected; changes in the enteric neuronal subtypes were assessed by real-time polymerase chain reaction, immunoblots, and immunostaining. Production of reactive oxygen species (ROS) in the jejunal myenteric plexi and phosphorylation (p) of mitogen-activated protein kinase 1 (MAPK1) in the enteric ganglia were assessed by immunoblots and immunostaining. Fluorescence in situ hybridization was performed on jejunal cryosections with probes to detect formyl peptide receptor 1 (FPR1). GI motility in conventional mice was assessed after daily gavage of LGG for 1 week. RESULTS: Feeding of LGG to mice stimulated myenteric production of ROS, increased levels of phosphorylated MAPK1, and increased expression of choline acetyl transferase by neurons (P < .001). These effects were not observed in mice given N-acetyl cysteine (a ROS inhibitor) or LGGΩSpaC (an adhesion-mutant strain of LGG) or FPR1-knockout mice. Gavage of mice with LGG for 1 week significantly increased stool frequency, reduced total GI transit time, and increased contractions of ileal circular muscle strips in ex vivo experiments (P < .05). CONCLUSIONS: Using mouse models, we found that LGG-mediated signaling in the ENS requires bacterial adhesion, redox mechanisms, and FPR1. This pathway might be activated to increase GI motility in patients.


Assuntos
Motilidade Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Íleo/metabolismo , Jejuno/metabolismo , Lacticaseibacillus rhamnosus , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Probióticos , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Colina O-Acetiltransferase/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Íleo/efeitos dos fármacos , Íleo/inervação , Hibridização in Situ Fluorescente , Jejuno/efeitos dos fármacos , Jejuno/inervação , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Contração Muscular/efeitos dos fármacos , Plexo Mientérico/citologia , Neurônios/efeitos dos fármacos , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Formil Peptídeo/genética
13.
Transfusion ; 59(4): 1233-1245, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30897226

RESUMO

BACKGROUND: While very low birth weight (VLBW) infants often require multiple red blood cell transfusions, efforts to minimize transfusion-associated risks have resulted in more restrictive neonatal transfusion practices. However, whether restrictive transfusion strategies limit transfusions without increasing morbidity and mortality in this population remains unclear. Recent epidemiologic studies suggest that severe anemia may be an important risk factor for the development of necrotizing enterocolitis (NEC). However, the mechanism whereby anemia may lead to NEC remains unknown. STUDY DESIGN AND METHODS: The potential impact of anemia on neonatal inflammation and intestinal barrier disruption, two well-characterized predisposing features of NEC, was defined by correlation of hemoglobin values to cytokine levels in premature infants and by direct evaluation of intestinal hypoxia, inflammation and gut barrier disruption using a pre-clinical neonatal murine model of phlebotomy-induced anemia (PIA). RESULTS: Increasing severity of anemia in the preterm infant correlated with the level of IFN-gamma, a key pro-inflammatory cytokine that may predispose an infant to NEC. Gradual induction of PIA in a pre-clinical model resulted in significant hypoxia throughout the intestinal mucosa, including areas where intestinal macrophages reside. PIA-induced hypoxia significantly increased macrophage pro-inflammatory cytokine levels, while reducing tight junction protein ZO-1 expression and increasing intestinal barrier permeability. Macrophage depletion reversed the impact of anemia on intestinal ZO-1 expression and barrier function. CONCLUSIONS: Taken together, these results suggest that anemia can increase intestinal inflammation and barrier disruption likely through altered macrophage function, leading to the type of predisposing intestinal injury that may increase the risk for NEC.


Assuntos
Anemia , Enterocolite Necrosante , Doenças do Prematuro , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Mucosa Intestinal , Anemia/complicações , Anemia/metabolismo , Anemia/patologia , Animais , Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Feminino , Humanos , Recém-Nascido , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Proteína da Zônula de Oclusão-1/metabolismo
14.
iScience ; 12: 356-367, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30739017

RESUMO

The use of beneficial bacteria to promote health is widely practiced. However, experimental evidence corroborating the efficacy of bacteria promoted with such claims remains limited. We address this gap by identifying a beneficial bacterium that protects against tissue damage and injury-induced inflammation in the gut. We first employed the Drosophila animal model to screen for the capacity of candidate beneficial bacteria to protect the fly gut against injury. From this screen, we identified Lactococcus lactis subsp. cremoris as a bacterium that elicited potent cytoprotective activity. Then, in a murine model, we demonstrated that the same strain confers powerful cytoprotective influences against radiological damage, as well as anti-inflammatory activity in a gut colitis model. In summary, we demonstrate the positive salutary effects of a beneficial bacterium, namely, L. lactis subsp. cremoris on intestinal tissue and propose the use of this strain as a therapeutic to promote intestinal health.

15.
Am J Pathol ; 188(4): 937-949, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366677

RESUMO

Several proteins endogenously produced during the process of intestinal wound healing have demonstrated prorestitutive properties. The presence of serum amyloid A1 (SAA1), an acute-phase reactant, within inflamed tissues, where it exerts chemotaxis of phagocytes, is well recognized; however, a putative role in intestinal wound repair has not been described. Herein, we show that SAA1 induces intestinal epithelial cell migration, spreading, and attachment through a formyl peptide receptor 2-dependent mechanism. Induction of the prorestitutive phenotype is concentration and time dependent and is associated with epithelial reactive oxygen species production and alterations in p130 Crk-associated substrate staining. In addition, using a murine model of wound recovery, we provide evidence that SAA1 is dynamically and temporally regulated, and that the elaboration of SAA1 within the wound microenvironment correlates with the influx of SAA1/CD11b coexpressing immune cells and increases in cytokines known to induce SAA expression. Overall, the present work demonstrates an important role for SAA in epithelial wound recovery and provides evidence for a physiological role in the wound environment.


Assuntos
Células Epiteliais/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células CACO-2 , Adesão Celular , Movimento Celular , Proteína Substrato Associada a Crk/metabolismo , Citocinas/metabolismo , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais , Cicatrização
16.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28717030

RESUMO

Ecto-5'-nucleotidase (CD73) is expressed abundantly on the apical surface of intestinal epithelial cells (IECs) and functions as the terminal enzyme in the generation of extracellular adenosine. Previous work demonstrated that adenosine signaling in IECs results in a number of tissue-protective effects during inflammation; however, a rationale for its apical expression has been lacking. We hypothesized that the highly polarized expression of CD73 is indicative of an important role for extracellular adenosine as a mediator of host-microbe interactions. We show that adenosine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shared by the related purine metabolite 5'-AMP, inosine, or hypoxanthine. Analysis of Salmonella colonization in IEC-specific CD73 knockout mice (CD73f/fVillinCre ) revealed a nearly 10-fold increase in colonization compared to that in controls. Despite the increased luminal colonization by Salmonella, CD73f/fVillinCre mice were protected against Salmonella colitis and showed reduced Salmonella burdens in viscera, suggesting that adenosine promotes dissemination. The knockdown of CD73 expression in cultured IECs resulted in dramatic defects in intraepithelial localization and replication as well as defective transepithelial translocation by Salmonella In conclusion, we define a novel antimicrobial activity of adenosine in the gastrointestinal tract and unveil an important role for adenosine as a regulator of host-microbe interactions. These findings have broad implications for the development of new therapeutic agents for infectious disease.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Interações Hospedeiro-Patógeno , Mucosa Intestinal/microbiologia , Salmonella enterica/crescimento & desenvolvimento , 5'-Nucleotidase/deficiência , 5'-Nucleotidase/genética , Adenosina/imunologia , Animais , Carga Bacteriana , Linhagem Celular , Células Epiteliais/microbiologia , Inflamação , Camundongos , Camundongos Knockout , Nucleotidases/metabolismo , Salmonella enterica/fisiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/fisiologia , Transdução de Sinais
17.
Obstet Gynecol ; 129(3): 507-509, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28178052

RESUMO

BACKGROUND: Clostridium difficile infection has been associated with negative outcomes in the general population and in pregnant patients. Fecal microbiota transplant has become the standard for treatment of recurrent as well as refractory C difficile infection. CASE: We present a case of a 28-year-old pregnant woman who presented with recurrent C difficile infection despite treatment with vancomycin and fidaxomicin and underwent a successful fecal microbiota transplant through colonoscopy at 18 weeks of gestation. She no longer required antibiotics for the remainder of her pregnancy to treat C difficile and had a term vaginal delivery at 39 weeks of gestation. CONCLUSION: Our pregnant patient tolerated and responded to a fecal microbiota transplant for treatment of recurrent C difficile infection. Future large-scale studies are needed to determine the efficacy, safety, and long-term effects of manipulating the microbiome in pregnant patients and the neonates.


Assuntos
Clostridioides difficile , Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal , Complicações Infecciosas na Gravidez/terapia , Adulto , Feminino , Humanos , Gravidez , Recidiva
18.
Mol Biol Cell ; 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27682585

RESUMO

Recent work has revealed a central role for neddylation (the conjugation of a Nedd8-moiety to Cullin proteins) in the fine tuning of the NF-κB response (via Cullin-1). In the present study, we investigated the contribution of Cullin-1 neddylation and NF-κB signaling to mucosal inflammatory responses in vitro and in vivo. Initial in vitro studies using cultured intestinal epithelial cells revealed that the neddylation inhibitor MLN4924 prominently induces the deneddylation of Cullin-1. Parallel western blot, luciferase reporter and gene target assays identified MLN4924 as a potent inhibitor of intestinal epithelial NF-κB. Subsequent studies revealed that MLN4924 potently induces epithelial apoptosis but only in the presence of additional inflammatory stimuli. In vivo administration of MLN4924 (3 mg/kg/d) in a TNBS-induce colitis model significantly accentuated disease severity. Indeed, MLN4924 resulted in worsened clinical scores and increased mortality early in the inflammatory response. Histologic analysis of the colon revealed that neddylation inhibition results in increased tissue damage and significantly increased mucosal apoptosis as determined by TUNEL and cleaved caspase-3 staining, particularly prominent within the epithelium. Extensions of these studies revealed that ongoing inflammation is associated with significant loss of deneddylase-1 (SENP8) expresssion. These studies reveal that intact Cullin-1 neddylation is central to resolution of acute inflammation.

19.
Mol Biol Cell ; 26(12): 2252-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25904334

RESUMO

Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA-mediated depletion of the HIF1ß in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1ß-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1ß-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis.


Assuntos
Claudina-1/genética , Fator 1 Induzível por Hipóxia/fisiologia , Mucosa Intestinal/fisiologia , Junções Íntimas/fisiologia , Imunoprecipitação da Cromatina , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Transdução de Sinais , Junções Íntimas/metabolismo , Ativação Transcricional
20.
Immunity ; 40(1): 66-77, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412613

RESUMO

Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.


Assuntos
Colite/imunologia , Hipóxia/imunologia , Mucosa/metabolismo , Neutrófilos/patologia , Animais , Comunicação Celular , Movimento Celular , Células Cultivadas , Microambiente Celular , Colite/induzido quimicamente , Colo/patologia , Modelos Animais de Doenças , Hipóxia/induzido quimicamente , Fator 1 Induzível por Hipóxia/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Mucosa/patologia , NADPH Oxidase 2 , NADPH Oxidases/genética , Estresse Oxidativo , Oxigênio/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Migração Transendotelial e Transepitelial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA