RESUMO
Gut microbes are important and may play important role in spreading cancers specially the gastrointestinal malignancies preferably colorectal cancers. Gut microbes and diet can influence the tissues in gastrointestinal tract increasing the risk of cancer spread. Insufficient nutrient intake and imbalance diet can disturb the microbiome of gastrointestinal tract causing metabolism of xenobiotics which is beneficial as well as detrimental. Dietary imbalance may also weaken the immune system which is another reason for spreading and development of cancers. The triage of gut microbiome, host immune system, and dietary patterns may help the initiation of mechanism of carcinogenesis. In addition to its role in carcinogenesis and tumor development, there is still growing evidence as to how intestinal microflora influences the efficacy and toxicity of chemotherapy and immunotherapy by the gut microbiome. It can therefore be used as a biomarker to predict treatment response or poor response and can also be modified to improve cancer treatment.
Assuntos
Dieta , Microbioma Gastrointestinal , Neoplasias , Humanos , Microbioma Gastrointestinal/fisiologia , Neoplasias/microbiologia , AnimaisRESUMO
The survivability of encapsulated and nonencapsulated probiotics consisting of Lactobacillus acidophilus and Lacticaseibacillus casei and the nutritional, physicochemical, and sensorial features of cottage cheese were investigated under refrigeration storage at 4 °C for 28 days. Microbeads of L. acidophilus and L. casei were developed using 2% sodium alginate, 1.5% sodium alginate and 0.5% carrageenan, and 1% sodium alginate and 1% carrageenan using an encapsulation technique to assess the probiotic viability in cottage cheese under different gastrointestinal conditions (SGF (simulated gastric juice), SIF (simulated intestinal fluid)), and bile salt) and storage conditions. Scanning electron microscopy (SEM) elucidated the stable structure of microbeads, Fourier transform infrared spectroscopy (FTIR) confirmed the presence probiotics in the microcapsules, and X-ray diffraction (XRD) demonstrated the amorphous state of microbeads. Furthermore, the highest encapsulation efficiency was observed for alginate 1% and carrageenan 1% microbeads (T3), i.e., 95%. Likewise, viability was recorded in T3 against SGF, SIF, and bile salt solution, i.e., 8.5, 8.8, and 8.9 log CFU/g at 80 min of exposure, compared to the control. The results of pH showed a significant (p < 0.05) decline that ultimately increased the titratable acidity. Nutritional analysis of cottage cheese revealed the highest levels of ash, protein, and total solids in T3, exhibiting mean values of 3.2, 22, and 43.2 g/100 g, respectively, after 28 days of storage. The sensory evaluation of cottage cheese demonstrated better color, flavor, and textural attributes in T3. Conclusively, synergistic addition of L. acidophilus and L. casei encapsulated with alginate-carrageenan gums was found to be more effective in improving the viability of probiotics in cottage cheese than noncapsulated cells while carrying better magnitudes of ash and protein, lower acidity, and pleasant taste.
RESUMO
Pomegranate peel powder (PPP) is a rich source of many bioactive components particularly polyphenols that are interlinked to various technological and functional properties. In the present study, chicken tender pops were developed with incorporation of PPP, and its effect on quality attributes and storage stability of the product were evaluated. The treatments were formulated using 0%, 3%, 6%, and 9% PPP in replacement of chicken. The physicochemical properties, texture profile, instrumental color, sensory attributes, and storage stability were assessed for 21 days at refrigeration temperature, at a regular interval of 7 days. The results indicated that the inclusion of PPP significantly (p < .05) increased the dietary fiber from 0.25% in T0 to 1.45% in T3 at Day 0 and WHC 43.60% ± 0.02 in T0 to 49.36% ± 0.02 in T3 at Day 0, whereas the moisture content significantly reduced from 60.05% ± 0.03 in T0 to 55.08% ± 0.01 in T3 at the start of the study. In addition, the values of TBARS were significantly (p < .05) reduced for treated samples 0.72 mg MDA/Kg in T3 as compared to control 1.17 mg MDA/Kg on the 21st day of storage, whereas a significant increase (p < .05) in TPC from 0.90 mg GAE/g to 3.87 mg GAE/g in T0 to T3 was observed at the start of the study. For TPA, a significant (p < .05) increase was noticed in hardness, chewiness, and gumminess, whereas cohesiveness and springiness showed a non-significant (p > .05) change in treated samples in relation to control, and the instrumental color (L* and a*) decreased significantly. However, pH, crude fiber, fat, ash, and protein content showed non-significant (p > .05) variations over time. The sensory evaluation suggested that chicken tender pops supplemented with 6% PPP (T2) presented high overall acceptability and balanced organoleptic properties. Hence, it can be concluded that PPP can be effectively utilized as a natural fiber source, antioxidant, and antimicrobial agent in novel functional foods.
RESUMO
A crucial element of cancer treatment is radiation therapy that is used to destroy tumors and cancer cells through radiation. Another essential component is immunotherapy that helps immune system to combat cancer. The combination of both radiation therapy and immunotherapy is being focused recently for the treatment of many tumors. Chemotherapy includes the use of some chemical agent to control the growth of cancer, whereas irradiation involves the use of radiations of high energy to kill cancer cells. The union of both became the strongest practice in cancer treatment techniques. Specific chemotherapies are combined with radiation in the treatment of cancer after proper preclinical assessment of their effectiveness. Some classes of compounds include platinum-based drugs, antimicrotubules, antimetabolites (5-Fluorouracil, Capecitabine, Gemcitabine, Pemetrexed), topoisomerase I inhibitors, alkylating agents (Temozolomide), and other agents (Mitomycin-C, Hypoxic Sensitizers, Nimorazole).
Assuntos
Neoplasias , Humanos , Imunoterapia , Gencitabina , Mitomicina , NimorazolRESUMO
The hormonal therapy for cancer has become a household name and the series of experiments performed leading to the discovery of hormones use in the treatments of breast cancer. The hormones like antiestrogen, aromatase restrictors, antiandrogens, and use of extremely strong luteinizing hormone-releasing hormone agonists to perform a "medical hypophysectomy" because of their ability of causing desensitization in the pituitary gland have proven their value in the treatment of cancers over the last two decades. Millions of women still use hormonal therapy for menopause symptoms. Estrogen plus progestin or estrogen separately utilized as a menopause hormonal therapy throughout the world. Women receiving different premenopausal and postmenopausal hormonal therapies are on higher risk of having ovarian cancer. The risk of ovarian cancer did not increase with the increase of duration of hormonal therapy. Postmenopausal hormone use was found to be inversely related to major colorectal adenomas.
Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Neoplasias Ovarianas , Feminino , Humanos , Estrogênios , MenopausaRESUMO
Malnutrition in cancer patients is highly prevalent. The metabolic and physiologic changes associated with the disease and the side effects of treatment regimens all combine together to produce a detrimental effect on the patient's nutritional status. A poor nutritional status significantly reduces the efficacy of treatment methods and the patient's overall chances of survival. Therefore, an individualized nutrition care plan is essential to counter malnutrition in cancer. Nutritional assessment is the first step of this process which sets the foundation for developing an effective intervention plan. Currently, there is no single standard method for nutritional assessment in cancer. Hence, to get a true picture of the patient's nutritional state, a comprehensive analysis of all aspects of the patient's nutritional status is the only reliable strategy. The assessment includes anthropometric measurements and evaluation of body protein status, body fat, inflammation markers, and immune markers. A thorough clinical examination which factors in the medical history and physical signs, along with the dietary intake patterns of the patient, is also important components of nutritional assessment of cancer patients. To facilitate with the process, various nutritional screening tools like patient-generated subjective global assessment (PGSGA), nutrition risk screening (NRS), and malnutrition screening tool (MST) have been developed. While these tools have their own benefits, they only give a glimpse of the nutritional problems and do not bypass the need for a complete assessment employing various methods. This chapter covers all four of the elements of nutritional assessment for cancer patients in detail.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Desnutrição , Neoplasias , Humanos , Avaliação Nutricional , Estado NutricionalRESUMO
In recent years, there has been a growing interest in development of a diverse range of foods that are enriched with omega-3 fatty acids. It is widely recognized that through dietary interventions, the lipid fraction of food can be modified to enhance its nutritional content. This study is aimed to develop chicken patties enriched with poly unstaurated fatty acids (PUFAs) extracted from microalgae aurintricarboxylic acid (ATA) concentration of 0% (T0), 1% (T1), 2% (T2), and 3% (T3). All treatments were stored at -18 °C for one month and analysed at an interval of 0, 10, 20, and 30 days to assess the effect of PUFAs supplementation on physicochemical, oxidative, microbiological and organoleptic properties of chicken patties. The results revealed that moisture content was significantly increased during the storage; the maximum moisture was observed in T0 (67.25% ± 0.03) on day 0, while the minimun was found in T3 (64.69% ± 0.04) on day 30. Supplemenatation of PUFAs in chicken patties significantly enhanced the fat content of the product the highest fat content was observed for T3 (9.7% ± 0.06. An increase in PUFAs concentration led to a significant increase in thiobarbituric acid reactive substances (TBARS). TBARS were increased from 1.22 ± 0.43 at 0 days to 1.48 ± 0.39 at 30 days of storage. The PUFAs incorporation negatively effected sensory acceptance of the product ranging from (8.41 ± 0.17 to 7.28 ± 0.12). However, the sensory scores were in acceptable range for supplemented patties as compared to control sample. Treatment T3 depicted the highest nutritional content. The sensory and physiochemical analysis of supplemented patties suggested that PUFAs extracted from microalgae can be used as a functional ingredient in the preparation various meat products particularly chicken meta patties. However, antioxidants should be added to to prevent lipid oxidation in the product.
Assuntos
Galinhas , Microalgas , Animais , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Ácidos Graxos Insaturados , Suplementos Nutricionais , Ácidos Graxos/análiseRESUMO
Jam Quality is a factor robustly influenced by storage conditions. The current research aimed to develop papaya jam with improved nutritional attributes, rheological profile, and shelf-life utilizing date pit powder as a functional ingredient. The effect of date pit powder on the formulated product's physicochemical, microbial, and organoleptic properties was analyzed. Results revealed that overall mineral profile (0.35-1.11%), crude fiber (0.56-2.01%), pH (3.51-3.70%), and antioxidant properties (22.97-30.67%) were significantly increased while water activity reduced (0.77-0.73). Moreover, date pit powder improved the color scores like a*(10.10-10.67), b* (8.13-8.78), L* (25.56-28.09), and textural attributes (Cohesiveness: 0.83-0.90; Firmness: 6.82-6.93) of functional papaya jam. Microbial count reduced from 3.60 × 105-3.06 × 105 cfu/ml by adding date pit powder and staying within the acceptable limit (4.13 × 105-3.60 × 105 cfu/ml) during 2-month storage at refrigeration. Organoleptic evaluation depicted that samples treated with date pit powder scored better than the control, and a sample with 75% pectin replacement was considered best.
RESUMO
The present study was designed to develop Nutrition Education Program (NEP) based on PRECEDE-PROCEED model (PPM) to address healthy eating behavior among middle school girls aged between 4 and 12 years. For this, middle school girls from grade 1 to 8 (n = 900) were consulted for their eating behaviors, followed by the analysis of their health problems. From 15 different schools of three large cities (Faisalabad, Lahore, and Rawalpindi) of Pakistan, students were divided into two groups: control group (n = 30) and intervention group (n = 30) from each school. The data were collected through interview-based questionnaires according to the phases of PRECEDE Model and evaluated based on PROCEED model. Implementation of NEP was carried out through lectures. Lessons were prepared to enhance student's awareness about nutritious food and healthy lifestyle through educational pamphlets and influenced their attitude towards selection of food choices from My-Plate. Results showed that NEP was quite successful for long-term results. A significant increase in total caloric intake was observed after 8 weeks of NEP intervention (1694 ± 217 Kcal) as compared to before intervention (1329 ± 318 Kcal). Similarly, carbohydrate, protein, and fat content was also increased in daily diet. Conclusively, NEP based on PPM has great impact on healthy lifestyle of middle school girls. Significant difference was observed in score of health variables before and after NEP intervention.
RESUMO
A wide range of novelties and significant developments in the field of veterinary science to treat helminth parasites by using natural plant products have been assessed in recent years. To the best of our knowledge, to date, there has not been such a comprehensive review of 19 years of articles on the anthelmintic potential of plants against various types of helminths in different parts of the world. Therefore, the present study reviews the available information on a large number of medicinal plants and their pharmacological effects, which may facilitate the development of an effective management strategy against helminth parasites. An electronic search in four major databases (PubMed, Scopus, Web of Science, and Google Scholar) was performed for articles published between January 2003 and April 2022. Information about plant species, local name, family, distribution, plant tissue used, and target parasite species was tabulated. All relevant studies meeting the inclusion criteria were assessed, and 118 research articles were included. In total, 259 plant species were reviewed as a potential source of anthelmintic drugs. These plants can be used as a source of natural drugs to treat helminth infections in animals, and their use would potentially reduce economic losses and improve livestock production.
RESUMO
As a promising delivery nanosystem for drug controlled-release, nanocarriers (NCs) have been investigated widely. Although various studies have concentrated on the preparation and characterization of nanoparticles (NPs), clinical applications are rarely reported, due to the unclear distribution, absorption, metabolism, toxicology processes and drug release mechanism. The clinical application of NCs is therefore still a long way off. This review describes the effects of the properties of NCs (including size, shape, surface properties, porosity, elasticity and so on) on pharmacological and toxicological behaviours in vivo and medical applications. Moreover, this study is intended to help the readers understand the behaviours and mechanisms of NCs and positively face the challenges caused by the variety of complicated and limited processes of NCs in vivo. Importantly, this article provides some strategies for the clinical application of NCs and may provide ideas to enhance the therapeutic efficacy of NCs without increasing the toxicology, by introducing tracing technology, which can be more suitable in contributing to the development of safety and efficacy of NCs and the growth of nanotechnology.
Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Liberação Controlada de Fármacos , Propriedades de Superfície , NanotecnologiaRESUMO
Banana peel powder is considered one of the most nutritive and effective waste product to be utilized as a functional additive in the food industry. This study aimed to determine the impact of banana peel powder at concentrations of 2%, 4%, and 6% on the nutritional composition, physicochemical parameters, antioxidant potential, cooking properties, microbial count, and organoleptic properties of functional nuggets during storage at refrigeration temperature for 21 days. Results showed a significant increase in nutritional content including ash and crude fiber ranging from 2.52 ± 0.017% to 6.45 ± 0.01% and 0.51 ± 0.01% to 2.13 ± 0.01%, respectively, whereas a significant decrease was observed in crude protein and crude fat ranging from 13.71 ± 0.02% to 8.92 ± 0.02% and 9.25 ± 0.02% to 4.51 ± 0.01%, respectively. The incorporation of banana peel powder significantly improved the Water Holding Capacity from 5.17% to 8.37%, cooking yield from 83.20 ± 0.20% to 87.73 ± 0.16% and cooking loss from 20.19 ± 0.290% to 13.98 ± 0.15%. Antioxidant potential was significantly improved as TPC of functional nuggets increased ranging from 3.73 ± 0.02 mg GAE/g to 8.53 ± 0.02 mg GAE/g while a decrease in TBARS (0.18 ± 0.02 mg malonaldehyde/kg to 0.14 ± 0.02 mg malonaldehyde/kg) was observed. Furthermore, functional broiler nuggets depicted a significantly reduced total plate count (3.06-4.20 × 105 CFU/g) than control, which is likely due to high amounts of phenolic compounds in BPP. Broiler nuggets supplemented with 2% BPP (T1) received the greatest sensory scores in terms of flavour, tenderness, and juiciness. Results of current study revealed the potential of BPP to be utilized as an effective natural source of fibre supplementation in food products along with enhanced antioxidant and anti-microbial properties.
Assuntos
Antioxidantes , Musa , Animais , Antioxidantes/química , Musa/química , Pós , Galinhas , Suplementos Nutricionais , MalondialdeídoRESUMO
The current research project involves isolation and characterization of PSM (phosphate solubilizing microorganisms) from the rhizospheric soil of certain medicinal plants and to determine their effect on plant growth. Medicinal plants, Aloe vera, Bauhinia variegata, Cannabis sativa, Lantana camara and Mentha viridis were selected for the isolation of PSMs. Soil status of the selected medicinal plants was also checked. Phosphate solubilizing bacteria (PSB) were observed under stereomicroscope for their morphological characteristics and Gram's staining. Phosphate solubilizing fungi (PSF) were also identified microscopically. Colony diameter, halo zone diameter and solubilization index were determined on PVK agar plates. TLC results indicated that citric acid was the most common acid produced by PSM strains. All strains were found to be non-pathogenic in pathogenicity test. A positive plant growth response to PSM inoculation was observed in all studies. In study 1, individual inoculation of PSM showed a significant increased effect on plant growth parameter i.e., fresh and dry weight, plant height and root and shoot length as compared to control. In study2, composite inoculation of PSM along with different P sources revealed that rock phosphate (RP) with PSM increased growth of plants significantly. The present study suggests that PSM inoculation along with RP amendment can be used as biofertilizer.
Assuntos
Mentha , Plantas Medicinais , Fosfatos/farmacologia , Bactérias , SoloRESUMO
Herbal drugs play an imperative role in healthcare programs in developing countries. Curry leaves have wide medicinal importance and are used to treat various diseases traditionally. The current study was carried out to estimate the extent of mercury toxicity and the potential effect of curry leaves against defined toxicity. The study group comprised 24 rats weighing between 130 and150 g. Group 1 was kept normal, and group 2 was exposed to mercury at 0.4 mg/kg of body weight in the form of mercuric chloride (HgCl2). The group 3 animals were treated with curry leaves with a dosage of 300 mg/kg of body weight. Group 4 was treated with curry leaves along with mercury with a dosage of 300 and 0.4 mg/kg consecutively. After 28 days, the rats were killed. Blood sample of all groups were evaluated separately to determine the results of different parameters. The results show that ALP, AST, ALT, urea, bilirubin, and creatinine increased with mercury application and decreased with curry leaf exposure. SOD, CAT, GPx, and GR of the liver as well as the kidney depleted on mercury exposure whereas they increased with curry leaf application. HDL increased with curry leaf application and decreased with mercury treatment, while LDL, triglyceride, and cholesterol decreased with curry leaves and increased with mercury exposure. Organ index in mercury along with curry leaf application got close to normal.
RESUMO
Curd is the most widespread traditional fermented milk product used by a large population and is a good source of vitamin B, protein, and calcium. In this study, the isolation of exopolysaccharide (EPS)-producing strains of Lactobacillus delbrueckii subsp. bulgaricus from curd samples was carried out. Identification of EPS-producing strains was done by Gram staining, catalase activity, sugar fermentation test, API 50 CHL, and PCR analysis. These EPS-producing strains were subjected for the estimation of technological properties such as titratable acidity, curdling time, acidification rate, and texture. The strains best in their technological properties were selected for the production of yogurt in combination with EPS- or non-EPS-producing strains of Streptococcus thermophilus. The EPS concentration range was from 41 to 268 mg/L in the yogurt. The highest value of EPS concentration was detected in S. thermophilus and non-EPS-producing Lb. bulgaricus after 14 days of storage.
RESUMO
Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat. "Yersiniosis" is caused by a pathogen named Yersinia enterocolitica and is characterized by diarrheal, ileitis, and mesenteric lymphadenitis types of sicknesses. This neglected pathogen starts its pathogenic activity by colonizing inside the intestinal tract of the host upon the ingestion of contaminated food. Y. enterocolitica remains a challenge for researchers and food handlers due to its growth habits, low concentrations in samples, morphological similarities with other bacteria and lack of rapid, cost-effective, and accurate detection methods. In this review, we presented recent information about its prevalence, biology, pathogenesis, and existing cultural, immunological, and molecular detection approaches. Our ultimate goal is to provide updated knowledge regarding this pathogen for the development of quick, effective, automated, and sensitive detection methods for the systematic detection of Y. enterocolitica.
RESUMO
Prunes could exert cardiovascular protective effects. Trials have demonstrated antihypertensive effects of Prunus domestica. The aim of this study was to find out if prunes could alter cardiac functions that may help understanding the mode of control of hypertension. Changes in rate and contractile force of frogs' heart were recorded using Power Lab. Effects of prunes' extracts: aqueous (10, 20, 40%); methanolic, acetonic, ethanolic and chloformic (10%); were evaluated and compared with other drugs. We tested effects of acetylcholine and atropine (10-5), adrenaline, propranolol, verapamil and diltiazem (10-3); NaC1, KCl, CaC12, MgC12 (10% w/v) on frog's heart alone and with prunes/drugs. All extracts of prunes significantly reduced HR and contractile force. Prunes combined with acetylcholine, propranolol or verapamil significantly enhanced bradycardia; whereas it blocked tachycardia produced by epinephrine, atropine or calcium; moreover prunes blocked the significant increase in HR and cardiac contractility produced by CaCl2; and reduced HR along with MgC12. NaCl and KCl alone or with prunes had non-significant effects on frog's heart. In conclusion, Prunus domestica plays a key role in modification of intracellular Ca+2 concentration resulting in negative ionotropic and chronotropic effects (similar to cholinergic stimulation and adrenergic or calcium channel blockade) that could lead to hypotensive effects.
Assuntos
Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prunus domestica , Animais , Anuros , Coração/fisiologia , Frequência Cardíaca/fisiologia , Técnicas de Cultura de Órgãos , Extratos Vegetais/isolamento & purificaçãoRESUMO
Preparation of oil-in-water nanoemulsions has emerged as a subject of interest for the encapsulation of lipophilic functional ingredients to increase their stability and activity. In this study, black cumin essential oil nanoemulsions (BCO-NE) using different ratios of essential oil with canola and flax seed oils (ripening inhibitors) were formulated and stabilized with octenyl succinic anhydride (OSA) modified waxy maize starch. The nanoemulsions exhibited monomodal size distributions with mean droplet diameter below 200 nm and zeta potential above -30, indicating a strong electrostatic repulsion between the dispersed oil droplets. Further, during storage (4 weeks at 25 °C ± 2) emulsions showed shear thinning phenomena and stability towards coalescence. Antimicrobial properties of nanoemulsions were determined by minimum inhibitory concentration and time-kill method against two Gram-positive bacterial (GPB) strains (Bacillus cereus and Listeria monocytogenes). Negatively charged BCO-NE showed prolonged bactericidal activities as compared to pure BCO due to better stability, controlled release and self-assembly with GPB cell membrane followed by destruction of cellular constituents. Our results suggest the application of BCO-NE may be exploited in aqueous food systems for extending the shelf life and other functional properties.
RESUMO
The effect of varying concentrations of the nitrogen source on the growth kinetics, lipid accumulation, lipid and DHA productivity, and fatty acid composition of C. cohnii was elucidated. Growth of C. cohnii was in three distinct growth stages: cell growth, lipid accumulation and a final lipid turnover stage. Most of lipids were accumulated in lipid accumulation stage (48-120 h) though, slow growth rate was observed during this stage. NaNO3 supported significantly higher lipid content (26.9% of DCW), DHA content (0.99 g/L) and DHA yield (44.2 mg/g glucose) which were 2.5 to 3.3-folds higher than other N-sources. The maximum level of C16-C18 content (% TFA) was calculated as 43, 54 and 43% in lipid accumulation stage under low nitrogen (LN, 0.2 g/L), medium nitrogen (MN, 0.8 g/L) and high nitrogen (HN, 1.6 g/L) treatments, respectively. Cultures with LN, by down-regulating cell metabolism, trigger onset of lipogenic enzymes. Conversely, NAD+/NADP+-dependent isocitrate dehydrogenase (NAD+/NADP+-ICDH) were less active in LN than HN treatments which resulted in retardation of Kreb's Cycle and thereby divert citrate into cytoplasm as substrate for ATP-citrate lyase (ACL). Thereby, ACL and fatty acid synthase (FAS) were most active in lipid accumulation stage at LN treatments. Glucose-6-phosphate dehydrogenase (G6PDH) was more active than malic enzyme (ME) in lipid accumulation stage and showed higher activities in NaNO3 than other N-sources. This represents that G6PDH contributes more NADPH than ME in C. cohnii. However, G6PDH and ME together seems to play a dual role in offering NADPH for lipid biosynthesis. This concept of ME together with G6PD in offering NADPH for lipogenesis might be novel in this alga and needed to be explored.
RESUMO
The influence of 20 standard amino acids was investigated on growth, lipid accumulation, docosahexaenoic acid (DHA) production and cell biochemical composition of Crypthecodinium cohnii. C. cohnii efficiently utilize organic nitrogen (predominantly threonine and to a lesser extent tyrosine and serine) as compared to inorganic nitrogen (NH4)2SO4. However, No significant effect was observed on major biochemical composition of C. cohnii (lipids, carbohydrates and proteins) under N limitation or supplementation with different N-sources. Key lipogenic enzymes glucose-6-phosphate dehydrogenase, ATP-citrate lyase, fatty acid synthase, malic enzyme, citrate synthase (CS), NAD+ and NADP+ dependent isocitrate dehydrogenase were shown to be vital in lipogenesis of C. cohnii. Our results indicated that the process of lipid accumulation in C. cohnii is growth-associated and does not depend upon the trigger of nitrogen depletion. This unusual behavior would suggest that the metabolism of the cells may not be entirely the same as in other lipid-accumulating microorganisms.