Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 16(11): 1430-1437, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830680

RESUMO

The formation of a monolayer film of bis-naphthyridyl ferrocene on highly oriented pyrolytic graphite (HOPG) at ambient conditions is demonstrated. The films are prepared by drop casting from different solvents. The microscopic structure of the films is understood using atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The analysis reveals two different types of Phases (I and II) in the films and the relative percentage of these phases depends on the nature of the solvents used for the preparation and the thermodynamical condition. Solvents like methanol, acetonitrile and DMF exclusively select Phase-I, whereas acetone and ethanol show a mix of both phases at room temperature. The different phases are formed by different conformers of the molecule. We also show that the selectivity of one of the phases over the other is related to the difference in the energetics for the formation of these phases.

2.
J Phys Chem Lett ; 11(1): 297-302, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31842542

RESUMO

We report the formation of discrete molecular rings/spirals of small molecules (1,3-dithia derivatives of ferrocene) on a highly oriented pyrolytic graphite (HOPG) surface. On the basis of microscopy and theoretical calculations, molecular level arrangement within the molecular rings is understood. The molecular rings show a limiting inner diameter, and we interpret it to be related to the critical intermolecular interaction limit. This limiting value of the inner diameter is surprisingly correlated with that observed for molecular rings/disks of a few reported molecules. The correlation reveals that molecular rings formed typically by weak van der Waals interactions should always show a limiting inner diameter and should be independent of molecular structure, size, and chemical nature.

3.
Inorg Chem ; 56(15): 8847-8855, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731341

RESUMO

The solvothermal reaction of Zn(NO3)2·6H2O and a linear dicarboxylate ligand H2L, in the presence of urotropine in N,N'-dimethylformamide (DMF), gives rise to a new porous two-dimensional (2D) coordination network, {[Zn3(L)3(urotropine)2]·2DMF·3H2O}n (1), with hxl topology. Interestingly, framework 1 exhibits excellent emission properties owing to the presence of naphthalene moiety in the linker H2L, that can be efficiently suppressed by subtle quantity of nitro explosives in aqueous medium. Furthermore, presence of urotropine molecules bound to the metal centers, 1 is found to be an excellent heterogeneous catalyst meant for atom-economical C-C bond-forming Baylis-Hillman reactions. Additionally, crystals of 1 undergo complete transmetalation with Cu(II) to afford isostructural 1Cu. Moreover, the 2D framework of 1 allows replacement of urotropine molecules by 4,4'-azopyridine (azp) linker resulting in a three-dimensional (3D) metal-organic framework, {[Zn(L)(azp)]·4DMF 2H2O}n (2). The 1→2 transformation takes place in single-crystal-to-single crystal manner supported by powder X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy, and morphological studies. Remarkably, during this 2D→3D transformation, the original trinuclear [Zn3(COO)6] secondary building unit changes to a mononuclear node, which is unprecedented.

4.
Inorg Chem ; 56(7): 3976-3982, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28290669

RESUMO

Growth of a silver coordination polymer of a C3-symmetric hexaadenine ligand is studied on highly oriented pyrolytic graphite (HOPG), using high-resolution atomic force microscopy (AFM). This unusual ligand offers 6-fold multidentate coordination sites, and consequently, a multidimensional growth of coordination polymer is expected. Notably, each discrete hexapodal unit is bridged by two silver ions along one of the crystallographic directions, resulting in high interaction energy along this direction. When the polymer was deposited on an HOPG surface from a dilute solution, we observed abundant one-dimensional (1D) coordination polymer chains, with a minimum width of approximately 4.5 nm. The single-crystal structure using X-ray analysis is compared with the surface patterns to reconcile and understand the structure of the 1D polymer on an HOPG surface. The energy levels of Ag-L1 within the proposed model were calculated, on the basis of the X-ray crystal structure, and compared to the ligand states to gain information about the electronic structure of ligand upon Ag coordination. On the basis of the wave functions of a few molecular orbitals (MOs) near the Fermi energy, it is surmised that unfilled MOs may play a crucial role in the transport properties of the Ag-L1 adlayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA