Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 289(9): 6091-7, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24425865

RESUMO

The circadian clock regulates a wide range of physiological and metabolic processes, and its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating evidence reveals that the circadian clock regulates levels of metabolites that, in turn, may regulate the clock. Here we demonstrate that the circadian clock regulates the intracellular levels of acetyl-CoA by modulating the enzymatic activity of acetyl-CoA Synthetase 1 (AceCS1). Acetylation of AceCS1 controls the activity of the enzyme. We show that acetylation of AceCS1 is cyclic and that its rhythmicity requires a functional circadian clock and the NAD(+)-dependent deacetylase SIRT1. Cyclic acetylation of AceCS1 contributes to the rhythmicity of acetyl-CoA levels both in vivo and in cultured cells. Down-regulation of AceCS1 causes a significant decrease in the cellular acetyl-CoA pool, leading to reduction in circadian changes in fatty acid elongation. Thus, a nontranscriptional, enzymatic loop is governed by the circadian clock to control acetyl-CoA levels and fatty acid synthesis.


Assuntos
Acetato-CoA Ligase/metabolismo , Relógios Circadianos/fisiologia , Ácidos Graxos/biossíntese , Sirtuína 1/metabolismo , Acetato-CoA Ligase/genética , Acetilação , Animais , Células Cultivadas , Ácidos Graxos/genética , Camundongos , Camundongos Knockout , NAD/genética , NAD/metabolismo , Sirtuína 1/genética
2.
Cell ; 155(7): 1464-78, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360271

RESUMO

Circadian rhythms and cellular metabolism are intimately linked. Here, we reveal that a high-fat diet (HFD) generates a profound reorganization of specific metabolic pathways, leading to widespread remodeling of the liver clock. Strikingly, in addition to disrupting the normal circadian cycle, HFD causes an unexpectedly large-scale genesis of de novo oscillating transcripts, resulting in reorganization of the coordinated oscillations between coherent transcripts and metabolites. The mechanisms underlying this reprogramming involve both the impairment of CLOCK:BMAL1 chromatin recruitment and a pronounced cyclic activation of surrogate pathways through the transcriptional regulator PPARγ. Finally, we demonstrate that it is specifically the nutritional challenge, and not the development of obesity, that causes the reprogramming of the clock and that the effects of the diet on the clock are reversible.


Assuntos
Relógios Circadianos , Dieta Hiperlipídica , Redes e Vias Metabólicas , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 110(24): 9897-902, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716692

RESUMO

Organisms adapt to day-night cycles through highly specialized circadian machinery, whose molecular components anticipate and drive changes in organism behavior and metabolism. Although many effectors of the immune system are known to follow daily oscillations, the role of the circadian clock in the immune response to acute infections is not understood. Here we show that the circadian clock modulates the inflammatory response during acute infection with the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Mice infected with S. Typhimurium were colonized to higher levels and developed a higher proinflammatory response during the early rest period for mice, compared with other times of the day. We also demonstrate that a functional clock is required for optimal S. Typhimurium colonization and maximal induction of several proinflammatory genes. These findings point to a clock-regulated mechanism of activation of the immune response against an enteric pathogen and may suggest potential therapeutic strategies for chronopharmacologic interventions.


Assuntos
Relógios Circadianos/imunologia , Citocinas/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Proteínas CLOCK/deficiência , Proteínas CLOCK/genética , Proteínas CLOCK/imunologia , Ceco/imunologia , Ceco/metabolismo , Ceco/microbiologia , Células Cultivadas , Relógios Circadianos/genética , Análise por Conglomerados , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/fisiologia , Fatores de Tempo
4.
Handb Exp Pharmacol ; (217): 29-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23604474

RESUMO

Epigenetic control, which includes DNA methylation and histone modifications, leads to chromatin remodeling and regulated gene expression. Remodeling of chromatin constitutes a critical interface of transducing signals, such as light or nutrient availability, and how these are interpreted by the cell to generate permissive or silenced states for transcription. CLOCK-BMAL1-mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Here we will discuss the evidence demonstrating that chromatin remodeling is at the crossroads of circadian rhythms and regulation of metabolism and cellular proliferation.


Assuntos
Relógios Circadianos/fisiologia , Epigênese Genética , Fatores de Transcrição ARNTL/fisiologia , Animais , Proteínas CLOCK/fisiologia , Montagem e Desmontagem da Cromatina , Cronofarmacoterapia , Humanos , Mutação , Neoplasias/tratamento farmacológico , Sirtuína 1/fisiologia
5.
Front Mol Neurosci ; 5: 37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470318

RESUMO

Epigenetic changes, such as DNA methylation or histone modification, can remodel the chromatin and regulate gene expression. Remodeling of chromatin provides an efficient mechanism of transducing signals, such as light or nutrient availability, to regulate gene expression. CLOCK:BMAL1 mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Recent research has demonstrated that chromatin remodeling is at the cross-roads of circadian rhythms and regulation of metabolism and aging. It would be of interest to identify if similar pathways exist in the epigenetic regulation of memory formation.

6.
Trends Endocrinol Metab ; 23(1): 1-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22169754

RESUMO

Circadian rhythms occur with a periodicity of approximately 24h and regulate a wide array of metabolic and physiologic functions. Accumulating epidemiological and genetic evidence indicates that disruption of circadian rhythms can be directly linked to many pathological conditions, including sleep disorders, depression, metabolic syndrome and cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of cellular metabolism. Although the circadian clock regulates multiple metabolic pathways, metabolite availability and feeding behavior can in turn regulate the circadian clock. An in-depth understanding of this reciprocal regulation of circadian rhythms and cellular metabolism may provide insights into the development of therapeutic intervention against specific metabolic disorders.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Metabolismo Energético , Animais , Transtornos Cronobiológicos/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Humanos , Metaboloma
7.
Aging (Albany NY) ; 3(8): 794-802, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21937766

RESUMO

The Intracellular levels of nicotinamide adenine dinucleotide (NAD(+)) are rhythmic and controlled by the circadian clock. However, whether NAD(+) oscillation in turn contributes to circadian physiology is not fully understood. To address this question we analyzed mice mutated for the NAD(+) hydrolase CD38. We found that rhythmicity of NAD(+) was altered in the CD38-deficient mice. The high, chronic levels of NAD(+) results in several anomalies in circadian behavior and metabolism. CD38-null mice display a shortened period length of locomotor activity and alteration in the rest-activity rhythm. Several clock genes and, interestingly, genes involved in amino acid metabolism were deregulated in CD38-null livers. Metabolomic analysis identified alterations in the circadian levels of several amino acids, specifically tryptophan levels were reduced in the CD38-null mice at a circadian time paralleling with elevated NAD(+) levels. Thus, CD38 contributes to behavioral and metabolic circadian rhythms and altered NAD(+) levels influence the circadian clock.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Glicoproteínas de Membrana/metabolismo , NAD/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Fígado , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Mutação , Descanso/fisiologia
8.
Mol Pharmacol ; 79(4): 786-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21233218

RESUMO

Palmitoylethanolamide (PEA) is an endogenous lipid amide that modulates pain and inflammation by engaging peroxisome proliferator-activated receptor type-α. Here, we show that the proinflammatory bacterial endotoxin lipopolysaccharide (LPS) decreases PEA biosynthesis in RAW264.7 macrophages by suppressing the transcription of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), which catalyzes the production of PEA and other lipid amides. Using a luciferase reporter construct and chromatin immunoprecipitation, we further show that LPS treatment reduces acetylation of histone proteins bound to the NAPE-PLD promoter, an effect that is blocked by the histone deacetylase inhibitor trichostatin A. The transcription factor Sp1 is involved in regulating baseline NAPE-PLD expression but not in the transcriptional suppression induced by LPS. The ability of LPS to down-regulate PEA biosynthesis is impaired in peritoneal macrophages from mutant NAPE-PLD-deficient mice, in which PEA is produced through a compensatory mechanism distinct from NAPE-PLD. Moreover, NAPE-PLD-deficient mice fail to mount a normal inflammatory reaction in response to carrageenan administration in vivo. Our findings suggest that proinflammatory stimuli suppress NAPE-PLD expression and PEA biosynthesis in macrophages and that this effect might contribute to the inflammatory response.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/toxicidade , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Fosfolipase D/biossíntese , Animais , Linhagem Celular , Células Cultivadas , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
9.
PLoS One ; 5(1): e8561, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20049328

RESUMO

BACKGROUND: Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3beta signaling pathway regulates BMAL1 protein stability and activity. PRINCIPAL FINDINGS: GSK3beta phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3beta-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3beta pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons. CONCLUSIONS: These findings uncover a previously unknown mechanism of circadian clock control. The GSK3beta kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano , Quinase 3 da Glicogênio Sintase/metabolismo , Fatores de Transcrição ARNTL/química , Sequência de Aminoácidos , Animais , Células Cultivadas , Dopamina/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
10.
Nat Rev Cancer ; 9(12): 886-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19935677

RESUMO

Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Neoplasias/metabolismo , Ciclo Celular , Cromatina/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Humanos , Mutação , NAD/biossíntese , Sirtuína 1/metabolismo
11.
Science ; 324(5927): 654-7, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19286518

RESUMO

Many metabolic and physiological processes display circadian oscillations. We have shown that the core circadian regulator, CLOCK, is a histone acetyltransferase whose activity is counterbalanced by the nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase SIRT1. Here we show that intracellular NAD+ levels cycle with a 24-hour rhythm, an oscillation driven by the circadian clock. CLOCK:BMAL1 regulates the circadian expression of NAMPT (nicotinamide phosphoribosyltransferase), an enzyme that provides a rate-limiting step in the NAD+ salvage pathway. SIRT1 is recruited to the Nampt promoter and contributes to the circadian synthesis of its own coenzyme. Using the specific inhibitor FK866, we demonstrated that NAMPT is required to modulate circadian gene expression. Our findings in mouse embryo fibroblasts reveal an interlocked transcriptional-enzymatic feedback loop that governs the molecular interplay between cellular metabolism and circadian rhythms.


Assuntos
Ritmo Circadiano , Citocinas/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sirtuínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Acrilamidas/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Biológicos , Proteínas CLOCK , Linhagem Celular , Montagem e Desmontagem da Cromatina , Citocinas/antagonistas & inibidores , Citocinas/genética , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Piperidinas/farmacologia , Regiões Promotoras Genéticas , Sirtuína 1 , Transativadores/genética , Transcrição Gênica
12.
Arterioscler Thromb Vasc Biol ; 29(3): 387-93, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19095999

RESUMO

OBJECTIVE: The 12/15-Lipoxygenase (12/15-LO) and its metabolite 12(S)-Hydroxyeicosatetraenoic acid [12(S)-HETE] mediate proatherogenic responses in vascular smooth muscle cells (VSMCs). We examined the role of the nonreceptor tyrosine kinase Src in the signaling and epigenetic chromatin mechanisms involved in these processes. METHODS AND RESULTS: Rat VSMCs (RVSMCs) were stimulated with 12(S)-HETE (0.1 micromol/L) in the presence or absence of the Src inhibitor PP2 (10 micromol/L). Src activation and downstream signaling events including inflammatory gene expression and chromatin histone H3-Lys-9/14 acetylation were examined by immunoblotting, RT-PCR, and chromatin immunoprecipitation assays, respectively. 12(S)-HETE significantly activated Src, focal adhesion kinase, Akt, p38MAPK, and CREB. Expression of monocyte chemoattractant protein-1 and interleukin-6 genes and histone H3-Lys-9/14 acetylation on their promoters were also increased by 12(S)-HETE. PP2 inhibited these responses as well as 12(S)-HETE-induced VSMC migration. Furthermore, dominant negative mutants of Src, CREB, and a histone acetyltransferase p300 significantly blocked 12(S)-HETE-induced inflammatory gene expression. In addition, growth factor induced Src signaling and downstream events including H3-Lys-9/14 acetylation and migration were significantly attenuated in VSMCs derived from 12/15-LO(-/-) mice relative to WT. CONCLUSIONS: Src kinase signaling plays a central role in the proatherogenic responses mediated by 12/15-LO and its oxidized lipid metabolite 12(S)-HETE in VSMCs.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Aterosclerose/enzimologia , Inflamação/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Quinases da Família src/metabolismo , Acetilação , Animais , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/deficiência , Araquidonato 15-Lipoxigenase/genética , Aterosclerose/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Montagem e Desmontagem da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Inflamação/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
13.
Cell ; 134(2): 329-40, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662547

RESUMO

Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.


Assuntos
Montagem e Desmontagem da Cromatina , Ritmo Circadiano , Sirtuínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Expressão Gênica , Histonas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Regiões Promotoras Genéticas , Sirtuína 1 , Sirtuínas/genética , Fatores de Transcrição/metabolismo
14.
J Vasc Res ; 45(2): 132-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17943024

RESUMO

Increased expression and activity of 12/15-lipoxygenase (12/15-LO) in vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetes and vascular complications. However, the consequences of 12/15-LO overexpression for VSMC migration and inflammatory gene expression are not known. In this study, 12/15-LO was overexpressed using adeno- and baculoviral vectors in human VSMC (HVSMCs) and proatherogenic responses compared with control enhanced green fluorescent protein (EGFP)-expressing cells. HVSMCs transduced with 12/15-LO viruses expressed high levels of enzymatically active protein and produced increased levels of the LO product, 12(S)-hydroxyeicosatetraenoic acid. 12/15-LO-overexpressing HVSMCs exhibited increased oxidant stress, activation of p38 mitogen-activated protein kinase, migration and inflammatory gene expression relative to HVSMCs expressing EGFP. Furthermore, inflammatory gene expression induced by 12/15-LO overexpression was abolished by anti-oxidants, siRNAs targeting p65 (nuclear factor-kappaB), or new-generation baculoviruses expressing inhibitory IkappaBalpha or IkappaBalpha superrepressor mutant. Thus, we have used novel viral vector delivery systems, including baculoviruses, for the first time to deliver foreign genes into VSMCs and thereby demonstrated that 12/15-LO overexpression increases oxidant stress, mitogen-activated protein kinase activation, migration and inflammatory genes in VSMCs and that NF-kappaB is a key downstream effector. Enhanced proatherogenic responses in VSMCs triggered by increased 12/15-LO levels under pathological conditions may contribute to vascular dysfunction.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Movimento Celular , Expressão Gênica , Vetores Genéticos , Inflamação/metabolismo , Complexos Multienzimáticos/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Adenoviridae/genética , Animais , Antioxidantes/farmacologia , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Baculoviridae/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Complexos Multienzimáticos/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Inibidor de NF-kappaB alfa , Estresse Oxidativo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Transdução Genética , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Nature ; 450(7172): 1086-90, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075593

RESUMO

Regulation of circadian physiology relies on the interplay of interconnected transcriptional-translational feedback loops. The CLOCK-BMAL1 complex activates clock-controlled genes, including cryptochromes (Crys), the products of which act as repressors by interacting directly with CLOCK-BMAL1. We have demonstrated that CLOCK possesses intrinsic histone acetyltransferase activity and that this enzymatic function contributes to chromatin-remodelling events implicated in circadian control of gene expression. Here we show that CLOCK also acetylates a non-histone substrate: its own partner, BMAL1, is specifically acetylated on a unique, highly conserved Lys 537 residue. BMAL1 undergoes rhythmic acetylation in mouse liver, with a timing that parallels the downregulation of circadian transcription of clock-controlled genes. BMAL1 acetylation facilitates recruitment of CRY1 to CLOCK-BMAL1, thereby promoting transcriptional repression. Importantly, ectopic expression of a K537R-mutated BMAL1 is not able to rescue circadian rhythmicity in a cellular model of peripheral clock. These findings reveal that the enzymatic interplay between two clock core components is crucial for the circadian machinery.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/fisiologia , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas CLOCK , Criptocromos , Flavoproteínas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Camundongos , Especificidade por Substrato
16.
Cell Cycle ; 6(11): 1329-31, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17534151

RESUMO

The circadian clock controls a large array of behavioral and physiological systems of fundamental importance to most organisms. Consequently, abnormal functioning of the clock results in severe dysfunctions and pathologies. Although epidemiological studies show a clear correlation between disruption of circadian rhythms and incidence of breast cancer, a molecular interpretation of how clock-related mechanisms may link to tumor development remains elusive. Here we speculate on the molecular pathways that may couple the circadian machinery to breast cancer.


Assuntos
Neoplasias da Mama/etiologia , Transformação Celular Neoplásica/genética , Ritmo Circadiano/fisiologia , Histona Acetiltransferases/fisiologia , Transativadores/fisiologia , Fatores de Transcrição ARNTL , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Proteínas CLOCK , Cromatina/metabolismo , Ritmo Circadiano/genética , Ciclina D1/fisiologia , Países Desenvolvidos , Suscetibilidade a Doenças , Receptor alfa de Estrogênio/fisiologia , Estrogênios , Feminino , Regulação da Expressão Gênica , Genes Supressores de Tumor , Histonas/metabolismo , Humanos , Mamíferos/fisiologia , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/fisiopatologia , Melatonina/fisiologia , Camundongos , Modelos Biológicos , Neoplasias Hormônio-Dependentes/etiologia , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/fisiopatologia , Proteínas Nucleares/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Risco , Fatores de Transcrição/fisiologia
17.
Arterioscler Thromb Vasc Biol ; 27(7): 1528-34, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17495236

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the role of coactivator histone acetyltransferases (HATs) p300 and SRC-1 in angiotensin II (Ang II)-induced interleukin-6 (IL-6) gene expression in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: Ang II increased IL-6 mRNA expression via NF-kappaB and CREB in an extracellular signal-regulated kinase (ERK)-dependent manner in rat VSMCs. It was also significantly enhanced by the histone deacetylase inhibitor, Trichostatin A. Chromatin immunoprecipitation (ChIP) assays showed that Ang II increased Histone H3 Lysine (K9/14) acetylation on the IL-6 promoter. Ang II-induced IL-6 promoter transactivation was significantly enhanced by p300 and SRC-1, with maximal activation in cells cotransfected with NF-kappaB (p65) and SRC-1. Nucleofection of VSMCs with either an ERK phosphorylation site mutant of SRC-1 or p300/CBP HAT deficient mutants significantly blocked Ang II-induced IL-6 expression. ChIP assays revealed that Ang II enhanced coordinate occupancy of p65, CREB, p300, and SRC-1 at the IL-6 promoter. An ERK pathway inhibitor blocked Ang-induced IL-6 promoter SRC-1 occupancy and histone acetylation. CONCLUSIONS: Ang II-induced IL-6 expression requires NF-kappaB and CREB as well as ERK-dependent histone acetylation mediated by p300 and SRC-1. These results provide new insights into nuclear chromatin mechanisms by which Ang II regulates inflammatory gene expression.


Assuntos
Angiotensina II/metabolismo , Proteína de Ligação a CREB/metabolismo , Histona Acetiltransferases/metabolismo , Interleucina-6/metabolismo , Músculo Liso Vascular/enzimologia , Fatores de Transcrição/metabolismo , Acetilação , Angiotensina II/farmacologia , Animais , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica , Interleucina-6/genética , Masculino , Modelos Animais , NF-kappa B/metabolismo , Coativador 1 de Receptor Nuclear , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
18.
Curr Opin Cell Biol ; 19(2): 230-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17317138

RESUMO

Circadian rhythms govern several fundamental physiological functions in almost all organisms, from prokaryotes to humans. The circadian clocks are intrinsic time-tracking systems with which organisms can anticipate environmental changes and adapt to the appropriate time of day. In mammals, circadian rhythms are generated in pacemaker neurons within the suprachiasmatic nuclei (SCN), a small area of the hypothalamus, and are entrained by environmental cues, principally light. Disruption of these rhythms can profoundly influence human health, being linked to depression, insomnia, jet lag, coronary heart disease and a variety of neurodegenerative disorders. It is now well established that circadian clocks operate via transcriptional feedback autoregulatory loops that involve the products of circadian clock genes. Furthermore, peripheral tissues also contain independent clocks, whose oscillatory function is orchestrated by the SCN. The complex program of gene expression that characterizes circadian physiology involves dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to ensure the proper timing and extent of circadian regulation. How signaling influences chromatin remodeling through histone modifications is therefore highly relevant in the context of circadian oscillation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas CLOCK , Ritmo Circadiano/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
19.
J Biol Chem ; 281(19): 13685-13693, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16551628

RESUMO

The receptor for advanced glycation end products (RAGE) and its ligands have been implicated in the activation of oxidant stress and inflammatory pathways in vascular smooth muscle cells (VSMCs) leading to the initiation and augmentation of atherosclerosis. Here we report that non-receptor Src tyrosine kinase and the membrane protein caveolin-1 (Cav-1) play a key role in the activation of RAGE by S100B in VSMCs. S100B increased the activation of Src kinase and tyrosine phosphorylation of caveolin-1 in VSMCs. A RAGE-specific antibody blocked both these effects. An inhibitor of Src kinase, PP2, significantly blocked S100B-induced activation of Src kinase, mitogen-activated protein kinases, transcription factors NF-kappaB and STAT3, superoxide production, tyrosine phosphorylation of Cav-1, VSMC migration, and expression of the pro-inflammatory genes monocyte chemotactic protein-1 and interleukin-6. Cholesterol depletion also inhibited S100B-induced effects indicating the requirement for intact caveolae in RAGE-specific signaling. Nucleofection of either a Src dominant negative mutant, or a Cav-1 mutant lacking the scaffolding domain, or Cav-1 short hairpin RNA significantly reduced S100B-induced inflammatory gene expression in VSMCs. Furthermore, VSMCs derived from insulin-resistant and diabetic db/db mice displayed increased RAGE expression, Src activation, and migration compared with those from control db/+ mice. The RAGE antibody blocked enhanced migration in db/db cells. These studies demonstrate for the first time that, in VSMCs, Src kinase and Cav-1 play important roles in RAGE-mediated inflammatory gene expression and migration, key events associated with diabetic vascular complications.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fatores de Crescimento Neural/farmacologia , Receptores Imunológicos/metabolismo , Proteínas S100/farmacologia , Quinases da Família src/metabolismo , Animais , Caveolina 1/metabolismo , Movimento Celular , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2 , Regulação da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , NF-kappa B/metabolismo , Estresse Oxidativo , Transporte Proteico , Ratos , Receptor para Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100 , Fator de Transcrição STAT3/metabolismo , Suínos , Sinaptotagmina I/metabolismo
20.
Circ Res ; 96(10): 1064-71, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15860756

RESUMO

Vascular smooth muscle cells (VSMCs) express functional interleukin-18 receptors (IL-18Rs), composed of alpha and beta subunits. These subunits are elevated in VSMCs of atherosclerotic plaques and can be induced by inflammatory agents in cultured VSMC. Because both IL-18 and Angiotensin II (Ang II) are implicated in atherosclerosis, our objective was to analyze the role of IL-18 signaling and potential cross-talk with Ang II in VSMC. We observed that IL-18 activated Src kinase, protein kinase C, p38 and JNK MAPKs, Akt kinase, transcription factors NF-kB and AP-1, and induced expression of pro-inflammatory cytokines in VSMC. Pretreatment of VSMC with Ang II enhanced IL-18-induced NF-kB activation and cytokine gene expression. Interestingly, Ang II directly increased mRNA and cell surface protein levels of the IL-18Ralpha subunit. Functional relevance in an organ culture model was demonstrated by the observation that incubation of intact mouse aortas ex vivo with Ang II also significantly increased IL-18Ralpha expression. Furthermore, Ang II significantly stimulated transcription from a minimal IL-18Ralpha promoter containing putative binding sites for STAT and AP-1. Ang II also increased in vivo recruitment of STAT-3 on the IL-18Ralpha promoter. Finally, dominant negative STAT-3 mutant blocked Ang II-induced IL-18Ralpha promoter activation in CHO cells overexpressing AT1a receptor and IL-18Ralpha mRNA expression in HVSMC. Thus, Ang II enhances IL-18 induced inflammatory genes by increasing IL-18Ralpha expression. These results illustrate a novel mechanism wherein Ang II- mediated increases in inflammatory genes and proatherogenic effects in the vasculature are enhanced by a vicious loop and cross-talk with the IL-18 signaling pathway.


Assuntos
Angiotensina II/farmacologia , Arteriosclerose/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Interleucina-18/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Proteínas de Ligação a DNA/fisiologia , Humanos , Subunidade alfa de Receptor de Interleucina-18 , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores de Interleucina/genética , Receptores de Interleucina-18 , Fator de Transcrição STAT3 , Transativadores/fisiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA