Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 30(1): 33, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237303

RESUMO

The SCUBE [Signal peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial growth factor domain-containing protein] family consists of three proteins in vertebrates, SCUBE1, 2 and 3, which are highly conserved in zebrafish, mice and humans. Each SCUBE gene encodes a polypeptide of approximately 1000 amino acids that is organized into five modular domains: (1) an N-terminal signal peptide sequence, (2) nine tandem epidermal growth factor (EGF)-like repeats, (3) a large spacer region, (4) three cysteine-rich (CR) motifs, and (5) a CUB domain at the C-terminus. Murine Scube genes are expressed individually or in combination during the development of various tissues, including those in the central nervous system and the axial skeleton. The cDNAs of human SCUBE orthologs were originally cloned from vascular endothelial cells, but SCUBE expression has also been found in platelets, mammary ductal epithelium and osteoblasts. Both soluble and membrane-associated SCUBEs have been shown to play important roles in physiology and pathology. For instance, upregulation of SCUBEs has been reported in acute myeloid leukemia, breast cancer and lung cancer. In addition, soluble SCUBE1 is released from activated platelets and can be used as a clinical biomarker for acute coronary syndrome and ischemic stroke. Soluble SCUBE2 enhances distal signaling by facilitating the secretion of dual-lipidated hedgehog from nearby ligand-producing cells in a paracrine manner. Interestingly, the spacer regions and CR motifs can increase or enable SCUBE binding to cell surfaces via electrostatic or glycan-lectin interactions. As such, membrane-associated SCUBEs can function as coreceptors that enhance the signaling activity of various serine/threonine kinase or tyrosine kinase receptors. For example, membrane-associated SCUBE3 functions as a coreceptor that promotes signaling in bone morphogenesis. In humans, SCUBE3 mutations are linked to abnormalities in growth and differentiation of both bones and teeth. In addition to studies on human SCUBE function, experimental results from genetically modified mouse models have yielded important insights in the field of systems biology. In this review, we highlight novel molecular discoveries and critical directions for future research on SCUBE proteins in the context of cancer, skeletal disease and cardiovascular disease.


Assuntos
Células Endoteliais , Peixe-Zebra , Humanos , Animais , Camundongos , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Membrana Celular/metabolismo , Sinais Direcionadores de Proteínas , Biologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Haematologica ; 108(5): 1284-1299, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005562

RESUMO

A hallmark of mixed lineage leukemia gene-rearranged (MLL-r) acute myeloid leukemia that offers an opportunity for targeted therapy is addiction to protein tyrosine kinase signaling. One such signal is the receptor tyrosine kinase Fms-like receptor tyrosine kinase 3 (FLT3) upregulated by cooperation of the transcription factors homeobox A9 (HOXA9) and Meis homeobox 1 (MEIS1). Signal peptide-CUB-EGF-like repeat-containing protein (SCUBE) family proteins have previously been shown to act as a co-receptor for augmenting signaling activity of a receptor tyrosine kinase (e.g., vascular endothelial growth factor receptor). However, whether SCUBE1 is involved in the pathological activation of FLT3 during MLL-r leukemogenesis remains unknown. Here we first show that SCUBE1 is a direct target of HOXA9/MEIS1 that is highly expressed on the MLL-r cell surface and predicts poor prognosis in de novo acute myeloid leukemia. We further demonstrate, by using a conditional knockout mouse model, that Scube1 is required for both the initiation and maintenance of MLL-AF9-induced leukemogenesis in vivo. Further proteomic, molecular and biochemical analyses revealed that the membrane-tethered SCUBE1 binds to the FLT3 ligand and the extracellular ligand-binding domains of FLT3, thus facilitating activation of the signal axis FLT3-LYN (a non-receptor tyrosine kinase) to initiate leukemic growth and survival signals. Importantly, targeting surface SCUBE1 by an anti-SCUBE1 monomethyl auristatin E antibody-drug conjugate led to significantly decreased cell viability specifically in MLL-r leukemia. Our study indicates a novel function of SCUBE1 in leukemia and unravels the molecular mechanism of SCUBE1 in MLL-r acute myeloid leukemia. Thus, SCUBE1 is a potential therapeutic target for treating leukemia caused by MLL rearrangements.


Assuntos
Fator de Crescimento Epidérmico , Leucemia Mieloide Aguda , Animais , Camundongos , Tirosina Quinase 3 Semelhante a fms , Leucemia Mieloide Aguda/patologia , Camundongos Knockout , Proteína Meis1 , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteômica , Receptores Proteína Tirosina Quinases , Fator A de Crescimento do Endotélio Vascular
3.
Apoptosis ; 21(8): 928-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325430

RESUMO

Mutation in B-Raf leads to gain of function in melanoma and causes aggressive behavior for proliferation. Most of the therapeutics are ineffective in this scenario. However, regulation of this aggressive behavior by targeting the key molecules would be viable strategy to develop novel and effective therapeutics. In this report we provide evidences that the resveratrol is potent to regulate melanoma cell growth than other inducers of apoptosis. Resveratrol inhibits pronounced cell proliferation in melanoma than other tumor cell types. Cell cycle analysis using flow cytometry shows that the treatment with resveratrol results in S phase arrest. Resveratrol inhibits microphthalmia-associated transcription factor (MITF) and its dependent genes without interfering the MITF DNA binding in vitro. Resveratrol-mediated cell death is protected in MITF overexpressed cells and it is aggravated in MITF knocked down cells. These suggest the resveratrol-mediated decrease in MITF is the possible cause of melanoma cell death. Though resveratrol-mediated downregulation of NF-κB is responsible for cell apoptosis, but the downregulation of MITF is the main reason for melanoma-specific cell death. Thus, resveratrol can be effective chemotherapeutic agent against rapid proliferative melanoma cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Morte Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Fator de Transcrição Associado à Microftalmia/metabolismo , NF-kappa B/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células HT29 , Humanos , Melanoma/metabolismo , Resveratrol , Fase S/efeitos dos fármacos , Estilbenos/farmacologia
4.
Eur J Pharmacol ; 764: 520-528, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26209362

RESUMO

Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Catalase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , NF-kappa B/metabolismo , Xantonas/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Catalase/química , Domínio Catalítico , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/patologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Fluorescência , Fator de Necrose Tumoral alfa/farmacologia , Células U937 , Regulação para Cima , Xantonas/química , Xantonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA