Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Prep Biochem Biotechnol ; 54(2): 193-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37184469

RESUMO

The marine environment is known for its vast diversity of the microbial population; however, less explored for bioactive compounds. In this study, an AMP produced by a new marine isolate, Vibrio proteolyticus MT110, showed broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria. The AMP was purified to homogeneity using ethyl acetate extraction followed by RP-HPLC, and LC-MS analysis showed its molecular weight as 980 Da. The MIC of AMP (peptide-MT110) was obtained in the 7.81-31.25 µg/mL range against different indicator strains. Peptide-MT110 showed stability of its antimicrobial activity at 15-121 °C and pH 4-10 and in the presence of various hydrolytic enzymes. The peaks at 1536 cm-1 and 1712 cm-1 wavenumbers in FTIR spectra confirmed the peptidic nature of AMP, and its amino acid analysis confirmed the presence of tyrosine and isoleucine. The antibacterial activity of peptide-MT110 is confirmed by PI assay and TEM. The optimization of peptide-MT110 production using statistical methods resulted in a 2.64-fold higher production. The physicochemical properties and stability in wide pH and temperature ranges showed the potential of peptide-MT110 for its development as a drug candidate. This is believed to be the first report on an AMP from Vibrio proteolyticus.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Vibrio , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Peptídeos , Testes de Sensibilidade Microbiana
2.
Int J Biol Macromol ; 253(Pt 3): 126803, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37689286

RESUMO

The present study reports the structural and functional characterization of a new glutaminase-free recombinant L-asparaginase (PrASNase) from Pseudomonas resinovorans IGS-131. PrASNase showed substrate specificity to L-asparagine, and its kinetic parameters, Km, Vmax, and kcat were 9.49 × 10-3 M, 25.13 IUmL-1 min-1, and 3.01 × 103 s-1, respectively. The CD spectra showed that PrASNase consisted of 18.5 % helix, 21.5 % antiparallel sheets, 4.2 % parallel sheets, 14 % turns, and rest other structures. FTIR was used for the functional characterization, and molecular docking predicted that the substrate interacts with serine, alanine, and glutamine in the binding pocket of PrASNase. Differing from known asparaginases, structural characterization by small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) unambiguously revealed PrASNase to exist as a monomer in solution at low temperatures and oligomerized to a higher state with temperature rise. Through SAXS studies and enzyme assay, PrASNase was found to be mostly monomer and catalytically active at 37 °C. Furthermore, this glutaminase-free PrASNase showed killing effects against WIL2-S and TF-1.28 cells with IC50 of 7.4 µg.mL-1 and 5.6 µg.mL-1, respectively. This is probably the first report with significant findings of fully active L-asparaginase in monomeric form using SAXS and AUC and demonstrated the potential of PrASNase in inhibiting cancerous cells, making it a potential therapeutic candidate.


Assuntos
Asparaginase , Asparagina , Asparaginase/química , Simulação de Acoplamento Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Asparagina/química
3.
Sci Rep ; 13(1): 11819, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479715

RESUMO

Four yeast strains were isolated from the gut of stingless bee, collected in Churdhar, Himachal Pradesh, India. Physiological characterization, morphological examination, and sequence analysis of small subunit ribosomal RNA (18S rRNA) genes, internal transcribed spacer (ITS) region, and D1/D2 domain of the large subunit rRNA gene revealed that the four strains isolated from the gut of stingless bee belonged to the Debaryomyces clade. Strain CIG-23HT showed sequence divergence of 7.5% from Debaryomyces nepalensis JCM 2095T, 7.8% from Debaryomyces udenii JCM 7855T, and Debaryomyces coudertii JCM 2387T in the D1/D2 domain. In the ITS region sequences, strain CIG-23HT showed a 15% sequence divergence from Debaryomyces nepalensis JCM 2095T and Debaryomyces coudertii JCM 2387T. In 18S rRNA gene sequence, the strain CIG-23HT showed 1.14% sequence divergence from Debaryomyces nepalensis JCM 2095 and and Debaryomyces coudertii JCM 2387, and 0.83% sequence divergence from Debaryomyces hansenii NRRL Y-7426. Strain CIG-23HT can utilize more carbon sources than closely related species. The findings suggest that strain CIG-23HT is a novel species of the genus Debaryomyces, and we propose to name it as Debaryomyces apis f.a., sp. nov. The holotype is CBS 16297T, and the isotypes are MTCC 12914T and KCTC 37024T. The MycoBank number of Debaryomyces apis f.a., sp. nov. is MB836065. Additionally, a method using cresol red and Bromothymol blue pH indicator dyes was developed to screen for lipase producers, which is more sensitive and efficient than the currently used phenol red and rhodamine B dye-based screening methods, and avoids the problem of less differentiable zone of hydrolysis.


Assuntos
Debaryomyces , Abelhas/genética , Animais , Debaryomyces/genética , Corantes , Filogenia , Lipase/genética , RNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Análise de Sequência de DNA , DNA Fúngico/genética , DNA Fúngico/química , Técnicas de Tipagem Micológica , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química
4.
Artif Cells Nanomed Biotechnol ; 50(1): 17-28, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35109731

RESUMO

Epidermal growth factor receptor (EGFR) is the primary target for the treatment of colorectal cancer, the third most diagnosed cancer worldwide. In recent years, regulatory changes have facilitated the approval of biosimilars aimed to bring more access to biologics to patients. However, it has also expended the requirements of non-clinical characterisation data using state-of-the-art and orthogonal methodologies to demonstrate similarity between proposed biologic and its reference medicinal product (RMP). The current study was aimed to develop a stable CHO-S cell line producing panitumumab biosimilar candidate, P-mAb, a fully human IgG2 anti-EGFR monoclonal antibody and assess its physicochemical and functional similarity with RMP, Vectibix. The single-cell clone from stably transfected CHO-S cell pools was used for the production of P-mAb. This was followed by purification and comparative physicochemical and biological characterisation of P-mAb and RMP using SDS-PAGE, LC/MS, MALDI, MS/MS, CD spectrometry, DSF, SAXS, ITF, MTT assay and binding affinity. SAXS and MST assays are being used for first time in biosimilarity analysis of therapeutic monoclonal antibody. The results of structural and functional analysis of anti-EGFR P-mAb, produced by stable CHO-S cell line revealed high similarity between P-mAb and RMP, vectibix, thus providing the scientific basis of its potential for therapeutic applications.


Assuntos
Medicamentos Biossimilares , Animais , Anticorpos Monoclonais/farmacologia , Medicamentos Biossimilares/análise , Medicamentos Biossimilares/química , Medicamentos Biossimilares/farmacologia , Células CHO , Cricetinae , Humanos , Espalhamento a Baixo Ângulo , Espectrometria de Massas em Tandem , Difração de Raios X
5.
Front Microbiol ; 12: 708712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489898

RESUMO

An increase in antibiotic resistance has led to escalating the need for the development of alternate therapy. Antimicrobial peptides (AMPs) are at the forefront of replacing conventional antibiotics, showing slower development of drug resistance, antibiofilm activity, and the ability to modulate the host immune response. The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens that jeopardize most conventional antibiotics are known to be involved in severe respiratory tract, bloodstream, urinary tract, soft tissue, and skin infections. Among them, S. aureus is an insidious microbe and developed resistance against conventional antibiotics. In the present study, an AMP (named as peptide-Ba49) isolated from Bacillus subtilis subsp. spizizenii strain from Allium cepa (the common onion) exhibited strong antibacterial efficacy against S. aureus ATCC 25923. The mode of action of this peptide-Ba49 on S. aureus was deciphered through various sensitive probes, i.e., DiSC3 (5) and H2DCFDA, suggesting the peptide-Ba49 to be acting upon through change in membrane potential and by triggering the production of reactive oxygen species (ROS). This induced disruption of the cell membrane was further supported by morphological studies using scanning electron microscopy (SEM). Investigations on a possible post-antibiotic effect (PAE) of peptide-Ba49 showed prolonged PAE against S. aureus. Furthermore, the peptide-Ba49 prevented the formation of S. aureus biofilm at low concentration and showed its potential to degrade the mature biofilm of S. aureus. The peptide-Ba49 also exhibited intracellular killing potential against S. aureus ATCC 25923 in the macrophage cells, and moreover, peptide-Ba49 was found to bolster the fibroblast cell migration in the scratch assay at low concentration, exhibiting a wound healing efficacy of this peptide. These studies demonstrated that peptide-Ba49 isolated from the strain B. subtilis subsp. spizizenii could be a therapeutic candidate to combat the pathogenic S. aureus infections.

6.
World J Microbiol Biotechnol ; 37(2): 20, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427970

RESUMO

Extensive usage of antibiotics has led to the emergence of drug-resistant strains of pathogens and hence, there is an urgent need for alternative antimicrobial agents. Antimicrobial Peptides (AMPs) of bacterial origin have shown the potential to replace some conventional antibiotics. In the present study, an AMP was isolated from Bacillus subtilis subsp. spizizenii strain Ba49 present on the Allium cepa, the common onion and named as peptide-Ba49. The isolated AMP was purified and characterized. The purified peptide-Ba49, having a molecular weight of ~ 3.3 kDa as determined using mass spectroscopy, was stable up to 121 °C and in the pH range of 5-10. Its interaction with protein degrading enzymes confirmed the peptide nature of the molecule. The peptide exhibited low minimum inhibitory concentration (MIC) against Staphylococcus aureus and its (Methicillin-resistant Staphylococcus aureus) MRSA strains (MIC, 2-16 µM/mL). Further, time kill kinetic assay was performed and analysis of the results of membrane depolarization and permeabilization assays (TEM, DiBAC4 (3) and PI) suggested peptide-Ba49 to be acting through the change in membrane potential leading to disruption of S. aureus membrane. Additionally, cytotoxicity studies of peptide-Ba49, carried out using three mammalian cell lines viz. HEK 293T, RAW 264.7, and L929, showed limited cytotoxicity on these cell lines at a concentration much higher than its MIC values. All these studies suggested that the AMP isolated from strain Ba49 (peptide-Ba49) has the potential to be an alternative to antibiotics in terms of eradicating the pathogenic as well as drug-resistant microorganisms.


Assuntos
Bacteriocinas/isolamento & purificação , Cebolas/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Família Multigênica , Células RAW 264.7 , Infecções Estafilocócicas , Temperatura , Sequenciamento Completo do Genoma
7.
3 Biotech ; 10(4): 148, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32181110

RESUMO

In the current study, the production of novel glutaminase free l-asparaginase from a new microbial source (Pseudomonas resinovorans IGS-131) is reported. Optimization of l-asparaginase production using conventional and statistical optimization techniques resulted in an enzyme yield of 37.63 IU/mL, which was 3.45-fold higher than the initial enzyme activity (i.e., 10.91 IU/mL). l-Asparaginase production from P. resinovorans IGS-131 was successfully carried out at the bioreactor level and investigations on the effect of agitation rates showed a maximum asparaginase yield of 38.88 IU/mL after 24 h fermentation at 400 rpm. The l-asparaginase gene from this source, showing 78% identity with a reported sequence in GenBank, was expressed in Escherichia coli rosetta DE3. The molecular weight of the recombinant protein was determined as 35.6 kDa. Downstream processing of recombinant l-asparaginase resulted in a purified protein concentration of 62.53 mg/L, which showed good free radical scavenging activity of 62%. The current findings provide promising results for a process of l-asparaginase production from P. resinovorans IGS-131. Furthermore, the recombinant production of this enzyme could help in avoiding the complexity of down streaming processes associated with the purification of this enzyme from wild-type organisms.

8.
Biotechnol Appl Biochem ; 67(4): 619-647, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31954377

RESUMO

l-Asparaginase (E.C.3.5.1.1.) is a vital enzyme that hydrolyzes l-asparagine to l-aspartic acid and ammonia. This property of l-asparaginase inhibits the protein synthesis in cancer cells, making l-asparaginase a mainstay of pediatric chemotherapy practices to treat acute lymphoblastic leukemia (ALL) patients. l-Asparaginase is also recognized as one of the important food processing agent. The removal of asparagine by l-asparaginase leads to the reduction of acrylamide formation in fried food items. l-Asparaginase is produced by various organisms including animals, plants, and microorganisms, however, only microorganisms that produce a substantial amount of this enzyme are of commercial significance. The commercial l-asparaginase for healthcare applications is chiefly derived from Escherichia coli and Erwinia chrysanthemi. A high rate of hypersensitivity and adverse reactions limits the long-term clinical use of l-asparaginase. Present review provides thorough information on microbial l-asparaginase bioprocess optimization including submerged fermentation and solid-state fermentation for l-asparaginase production, downstream purification, its characterization, and issues related to the clinical application including toxicity and hypersensitivity. Here, we have highlighted the bioprocess techniques that can produce improved and economically viable yields of l-asparaginase from promising microbial sources in the current scenario where there is an urgent need for alternate l-asparaginase with less adverse effects.


Assuntos
Asparaginase , Dickeya chrysanthemi/enzimologia , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Asparaginase/efeitos adversos , Asparaginase/biossíntese , Asparaginase/isolamento & purificação , Asparaginase/uso terapêutico , Proteínas de Escherichia coli/efeitos adversos , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/uso terapêutico , Humanos
9.
Enzyme Microb Technol ; 107: 72-81, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28899490

RESUMO

l-asparaginase is a pharmaceutically and industrially important enzyme as it has potential to treat different cancers and inhibit acrylamide formation in fried and baked food products. In the present study, an attempt was made to screen for new and novel l-asparaginase producers using a widely applied phenol red and bromothymol blue (BTB)1 dye-based plate assay. Screening of four different soil samples for l-asparaginase producers resulted in the isolation of three new potential l-asparaginase producing bacteria. These three strains identified (by 16S rRNA sequencing) as a Pseudomonas resinovorans strain IGS-131, a Bacillus safensis strain IGS-81, and a Glutamicibacter arilaitensis strain ICS-13 with enzyme activities of 10.91 IU/ml, 6.65 IU/ml, and 1.47 IU/ml, respectively. These three strains of bacteria have not been reported as l-asparaginase producers previously. Also, we developed a new pH indicator dye-based plate assay for the screening of l-asparaginase producers after testing eight different pH indicator dyes. This cresol red dye-based method gave a better differentiable zone of hydrolysis and consistent results as compared to previously reported phenol red and BTB-based plate assay. It was also found to be efficient in comparison to all other dyes studied. It produced a bright yellow color at acidic pH (5.5) and turned into a dark red or maroon color when pH was increased (above 7.5). This finding is expected to make screening of all kinds of l-asparaginases more comfortable, rapid, and efficient.


Assuntos
Asparaginase/biossíntese , Proteínas de Bactérias/biossíntese , Microbiologia do Solo , Bacillus/enzimologia , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Corantes , Meios de Cultura , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
10.
Sci Rep ; 5: 13412, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26292786

RESUMO

The emergence of antibiotic resistant bacteria has led to exploration of alternative therapeutic agents such as ribosomally synthesized bacterial peptides known as bacteriocins. Biofilms, which are microbial communities that cause serious chronic infections, form environments that enhance antimicrobial resistance. Bacteria in biofilm can be upto thousand times more resistant to antibiotics than the same bacteria circulating in a planktonic state. In this study, sonorensin, predicted to belong to the heterocycloanthracin subfamily of bacteriocins, was found to be effectively killing active and non-multiplying cells of both Gram-positive and Gram-negative bacteria. Sonorensin showed marked inhibition activity against biofilm of Staphylococcus aureus. Fluorescence and electron microscopy suggested that growth inhibition occurred because of increased membrane permeability. Low density polyethylene film coated with sonorensin was found to effectively control the growth of food spoilage bacteria like Listeria monocytogenes and S. aureus. The biopreservative effect of sonorensin coated film showing growth inhibition of spoilage bacteria in chicken meat and tomato samples demonstrated the potential of sonorensin as an alternative to current antibiotics/ preservatives.


Assuntos
Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Staphylococcus aureus/fisiologia , Citometria de Fluxo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Solanum lycopersicum , Carne , Permeabilidade/efeitos dos fármacos , Polietileno/farmacologia , Preservação Biológica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura
11.
Artigo em Inglês | MEDLINE | ID: mdl-25776023

RESUMO

We have developed EpiDBase (www.epidbase.org), an interactive database of small molecule ligands of epigenetic protein families by bringing together experimental, structural and chemoinformatic data in one place. Currently, EpiDBase encompasses 5784 unique ligands (11 422 entries) of various epigenetic markers such as writers, erasers and readers. The EpiDBase includes experimental IC(50) values, ligand molecular weight, hydrogen bond donor and acceptor count, XlogP, number of rotatable bonds, number of aromatic rings, InChIKey, two-dimensional and three-dimensional (3D) chemical structures. A catalog of all epidbase ligands based on the molecular weight is also provided. A structure editor is provided for 3D visualization of ligands. EpiDBase is integrated with tools like text search, disease-specific search, advanced search, substructure, and similarity analysis. Advanced analysis can be performed using substructure and OpenBabel-based chemical similarity fingerprints. The EpiDBase is curated to identify unique molecular scaffolds. Initially, molecules were selected by removing peptides, macrocycles and other complex structures and then processed for conformational sampling by generating 3D conformers. Subsequent filtering through Zinc Is Not Commercial (ZINC: a free database of commercially available compounds for virtual screening) and Lilly MedChem regular rules retained many distinctive drug-like molecules. These molecules were then analyzed for physicochemical properties using OpenBabel descriptors and clustered using various methods such as hierarchical clustering, binning partition and multidimensional scaling. EpiDBase provides comprehensive resources for further design, development and refinement of small molecule modulators of epigenetic markers.


Assuntos
Curadoria de Dados , Mineração de Dados/métodos , Bases de Dados de Compostos Químicos , Ligantes , Epigênese Genética , Estrutura Molecular
12.
Mol Pharm ; 12(4): 1018-30, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25644480

RESUMO

It is a challenge to formulate polymer based nanoparticles of therapeutic proteins as excipients and process conditions affect stability and structural integrity of the protein. Hence, understanding the protein stability and complex aggregation phenomena is an important area of research in therapeutic protein delivery. Herein we investigated the comparative role of three kinds of surfactant systems (Tween 20:Tween 80), small molecular weight poly(vinyl alcohol) (SMW-PVA), and high molecular weight PVA (HMW-PVA) in prevention of aggregation and stabilization of hexameric insulin in poly(lactide-co-glycolide) (PLGA) based nanoparticle formulation. The nanoparticles were prepared using solid-in-oil-in-water (S/O/W) emulsification method with one of the said surfactant system in inner aqueous phase. The thermal unfolding analysis of released insulin using circular dichroism (CD) indicated thermal stability of the hexameric form. Insulin aggregation monitored by differential scanning calorimetry (DSC) suggested the importance of nuclei formation for aggregation and its prevention by HMW-PVA. Additional guanidinium hydrochloride based equilibrium unfolding and in silico (molecular docking) studies suggested maximum stability of released insulin from formulation containing HMW-PVA (F3). Furthermore, in vivo studies of insulin loaded nanoparticle formulation (F3) in diabetic rats showed its bioactivity. In conclusion, our studies highlight the importance of C-terminal residues of insulin in structural integrity and suggest that the released insulin from formulation containing HMW-PVA in inner aqueous phase was conformationally and thermodynamically stable and bioactive in vivo.


Assuntos
Insulina/química , Nanopartículas/química , Álcool de Polivinil/química , Acrilamidas/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Cloretos/química , Dicroísmo Circular , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Guanidina/química , Ácido Láctico/química , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Peso Molecular , Pâncreas/metabolismo , Tamanho da Partícula , Poliglactina 910/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Polissorbatos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Tensoativos/química , Temperatura
13.
Bioresour Technol ; 175: 358-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459843

RESUMO

Media composition and environmental conditions were optimized using statistical tools, Plackett Burman design and response surface methodology, to maximize the yield of a bacteriocin, named as sonorensin, from a new marine isolate Bacillus sonorensis MT93 showing broad spectrum of antimicrobial activity. Under optimized conditions, MT93 produced 15-fold higher yield of sonorensin compared to that under initial fermentation conditions. As oxygen supply is a critical parameter controlling growth and product formation in aerobic bioprocesses and used as a parameter for bioprocess scale up, the effects of oxygen transfer, in terms of volumetric oxygen transfer coefficient (kLa), on production of sonorensin was investigated using optimized medium composition in a bioreactor. Studies on effectiveness of sonorensin against Staphylococcus aureus and Listeria monocytogenes in fruit juice and as a preservative in pasteurized milk demonstrated its potential as a biopreservative in fruit products and shelf life extender of the pasteurized milk.


Assuntos
Bacillus/metabolismo , Bacteriocinas/biossíntese , Biotecnologia/métodos , Conservantes de Alimentos , Aerobiose , Bacillus/efeitos dos fármacos , Bacillus/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Fermentação , Concentração de Íons de Hidrogênio , Modelos Teóricos , Nisina , Oxigênio/análise , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo
14.
Appl Environ Microbiol ; 80(10): 2981-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610839

RESUMO

Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized.


Assuntos
Bacillus/isolamento & purificação , Bacillus/metabolismo , Bacteriocinas/biossíntese , Sedimentos Geológicos/microbiologia , Peptídeos/metabolismo , Água do Mar/microbiologia , Sequência de Aminoácidos , Bacillus/química , Bacillus/genética , Bactérias/efeitos dos fármacos , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/farmacologia , Sequência de Bases , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Alinhamento de Sequência
15.
Bioresour Technol ; 147: 449-455, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012734

RESUMO

Debaryomyces hansenii is one of the most promising natural xylitol producers. As the conversion of xylitol to xylulose mediated by NAD(+) cofactor dependent xylitol dehydrogenase (XDH) reduces its xylitol yield, xylitol dehydrogenase gene (DhXDH)-disrupted mutant of D. hansenii having potential for xylose assimilating pathway stopping at xylitol, was used to study the effects of co-substrates, xylose and oxygen availability on xylitol production. Compared to low cell growth and xylitol production in cultivation medium containing xylose as the only substrate, XDH disrupted mutants grown on glycerol as co-substrate accumulated 2.5-fold increased xylitol concentration over those cells grown on glucose as co-substrate. The oxygen availability, in terms of volumetric oxygen transfer coefficient, kLa (23.86-87.96 h(-1)), affected both xylitol productivity and yield, though the effect is more pronounced on the former. The addition of extra xylose at different phases of xylitol fermentation did not enhance xylitol productivity under experimental conditions.


Assuntos
Engenharia Genética , Saccharomyces/metabolismo , Xilitol/biossíntese , D-Xilulose Redutase/genética , Saccharomyces/enzimologia , Saccharomyces/genética , Xilitol/metabolismo , Xilose/metabolismo
16.
Bioresour Technol ; 123: 135-43, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22940310

RESUMO

In this study, effects of temperature, inducer concentration, time of induction and co-expression of molecular chaperones (GroEL-GroES and DnaKJE), on cell growth and solubilization of model protein, xylanases, were investigated. The yield of soluble xylanases increased with decreasing cultivation temperature and inducer level. In addition, co-expression of DnaKJE chaperone resulted in increased soluble xylanases though the time of induction of chaperone and target protein had a bearing on this yield. A combination of chaperone co-expression and partial induction resulted in ∼40% (in DnaKJE) and 33% (in GroEL-GroES) of total xylanase yield in soluble fraction. However, the conditions for maximum yield of soluble r-XynB and maximum % soluble expression of r-XynB were different. Higher expression of soluble xylanases in a scalable semi-synthetic medium showed potential of the process for soluble enzyme production.


Assuntos
Biotecnologia/métodos , Endo-1,4-beta-Xilanases/biossíntese , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/biossíntese , Escherichia coli/citologia , Escherichia coli/enzimologia , Isopropiltiogalactosídeo/farmacologia , Solubilidade , Temperatura , Fatores de Tempo
17.
Mol Pharm ; 9(9): 2403-14, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22724678

RESUMO

Polymer-based delivery systems provide a promising alternative to multidose intake of many drugs/vaccines. Protein aggregation and inactivation, however, are major problems associated with the encapsulation of proteins in microspheres. With this in mind, we investigated the structural integrity of a model protein bovine serum albumin (BSA) released from poly(lactide-co-glycolide) (PLGA) based microspheres. BSA was encapsulated using solid-in-oil-in-water (S/O/W) double emulsification method with different mixtures of surfactants (carboxymethyl cellulose (CMC):Tween 20/CMC:Tween 80/Tween 20:Tween 80) and with or without polyethylene glycol (PEG). The morphology of BSA-loaded microspheres was analyzed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). BSA released from lyophilized microspheres was evaluated for the structural, conformational and thermal stability by using various spectroscopic and calorimetric techniques. Conformational analysis showed greater increase in secondary structural content of BSA in sample containing PEG and surfactant mixture of CMC and Tween 20 as compared to that containing other two mixtures of surfactants. The differential scanning calorimetric (DSC) analysis of released BSA from all PEG containing samples showed an increase in thermal stability of the protein. Furthermore, fluorescence spectra showed compactness of BSA. In conclusion our studies suggest macromolecular crowding, molecular confinement and increase in Gibbs free energy with strong electrostatic forces of repulsion between microspheres, the last phenomenon due to chosen surfactants, to be responsible for making the protein more compact and structurally integrated and result in a potential encapsulation process for improved protein integrity in final formulation.


Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Ácido Poliglicólico/química , Soroalbumina Bovina/química , Estabilidade de Medicamentos , Emulsões/química , Liofilização/métodos , Microscopia Eletrônica de Varredura/métodos , Microesferas , Óleos/química , Tamanho da Partícula , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tensoativos/química , Água/química
18.
Biochem Biophys Res Commun ; 392(4): 561-6, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20097167

RESUMO

The effect of different molar ratios of polyethylene glycol (PEG) on the conformational stability of protein, bovine serum albumin (BSA), was studied. The binding of PEG with BSA was observed by fluorescence spectroscopy by measuring the fluorescence intensity after displacement of PEG with chromophore ANS and had further been confirmed by measuring the intrinsic fluorescence of tryptophan residues of BSA. Co-lyophilization of BSA with PEG at optimum BSA:PEG molar ratio led to the formation of the stable protein particles. Circular dichroism (CD) spectroscopy study suggested that a conformational change had occurred in the protein after PEG interaction and demonstrated the highest stability of protein at the optimum BSA:PEG molar ratio of 1:0.75. Additional differential scanning calorimetry (DSC) study suggested strong binding of PEG to protein leading to thermal stability at optimum molar ratio. Molecular mechanism operating behind the polyethylene glycol (PEG) mediated stabilization of the protein suggested that strong physical adsorption of PEG on the hydrophobic core of the protein (BSA) along with surface adsorption led to the stability of protein.


Assuntos
Polietilenoglicóis/química , Soroalbumina Bovina/química , Animais , Bovinos , Dicroísmo Circular , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência , Triptofano/química , Ureia/química
19.
Bioresour Technol ; 100(19): 4468-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19428239

RESUMO

Fed-batch culture strategy is often used for increasing production of heterologous recombinant proteins in Escherichia coli. This study was initiated to investigate the effects of dissolved oxygen concentration (DOC), complex nitrogen sources and pH control agents on cell growth and intracellular expression of streptokinase (SK) in recombinant E. coli BL21(DE3). Increase in DOC set point from 30% to 50% did not affect SK expression in batch culture where as similar increase in fed-batch cultivation led to a significant improvement in SK expression (from 188 to 720 mg l(-1)). This increase in SK could be correlated with increase in plasmid segregational stability. Supplementation of production medium with yeast extract and tryptone and replacement of liquid ammonia with NaOH as pH control agent further enhanced SK expression without affecting cell growth. Overall, SK concentration of 1120 mg l(-1) representing 14-fold increase in SK production on process scale-up from flask to bioreactor scale fed-batch culture is the highest reported concentration of SK to date.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Estreptoquinase/biossíntese , Ampicilina/farmacologia , Meios de Cultura , Escherichia coli/efeitos dos fármacos , Vetores Genéticos/genética , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Oxigênio/farmacologia , Plasmídeos/genética , Solubilidade/efeitos dos fármacos
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 850(1-2): 384-91, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17188946

RESUMO

The downstream processing of recombinant streptokinase (rSK), a protein used for dissolution of blood clots has been investigated employing Escherichia coli inclusion bodies obtained after direct chemical extraction followed by expanded bed adsorption chromatography (EBAC). Streptokinase was over-expressed using high cell density (final OD(600)=40) culture of recombinant E. coli, and an SK protein concentration of 1080 mg l(-1) was achieved. The wet cell pellet after centrifugation was re-suspended in 8M urea containing buffer resulting in direct extraction of almost 97% of cellular proteins into solution. Compared to mechanical disruption using sonication, the direct extraction helped in simultaneous cell lysis and inclusion body (IB) solubilization in a single integrated step. The post-extraction solution containing cell debris and cellular proteins was diluted and directly loaded on to an EBAC column containing Streamline phenyl, without clarification. By passing the solution four times through the column and using 1M NaCl during loading, 82.7% rSK activity could be recovered in the 10mM sodium phosphate buffer used for elution. A 3-fold increase in specific activity of rSK, from 0.18 x 10(5) in cell lysate to 0.53 x 10(5)IU mg(-1) resulted after this step. rSK was further purified to near-homogeneity (specific activity=0.96 x 10(5)IU mg(-1)) by a subsequent ion-exchange step operated in packed bed mode. An overall downstream recovery of 63% rSK was achieved after EBAC and ion exchange chromatography. The paper thus describes the purification of rSK using a three-step regime involving simple, efficient and highly facile steps.


Assuntos
Cromatografia por Troca Iônica/métodos , Escherichia coli/enzimologia , Corpos de Inclusão/enzimologia , Estreptoquinase/isolamento & purificação , Adsorção , Eletroforese em Gel de Poliacrilamida , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA