Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 169: 106555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428633

RESUMO

Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.


Assuntos
Ácidos Nucleicos Livres , Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Placa Aterosclerótica/genética , Epigênese Genética , Epigenoma , Ácidos Nucleicos Livres/genética , Infarto do Miocárdio/metabolismo , Biomarcadores
2.
J Biomol Struct Dyn ; : 1-10, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37350097

RESUMO

Diabetes is a common lifestyle disorder found in populations of different age groups. Maltase-glucoamylase catalyses the release of the glucose molecule in the final enzymatic reaction of starch digestion; therefore, inhibition of maltase-glucoamylase is one of the approaches in the development of therapeutics for diabetes. Citrullus colocynthis is commonly recommended in Ayurveda for the treatment of diabetes. The current study applied a structure-based drug design approach to repurpose the phytochemicals of Citrullus colocynthis to identify potential inhibitors for maltase-glucoamylase. 70 phytochemicals of Citrullus colocynthis were screened against maltase-glucoamylase and top 5 molecules 8-p-hydroxybenzylisovitexin, isoorientin, cucurbitacin B, cucurbitacin E, and cucurbitacin I with significant binding energy of -10 kcal/mol, -9.9 kcal/mol, -9.6 kcal/mol, -9.2 kcal/mol, and -7.7 kcal/mol were identified. Furthermore, MMGBSA, pharmacokinetics properties and toxicity prediction were performed on the five identified molecules and top 3 molecules were selected for molecular dynamics (MD) simulation. It was observed from the structural flexibility and dynamic behaviour of the systems that conformational changes were noticed in the complexes as compared to its native state, which suggests that the 3 molecules, namely 8-p-hydroxybenzylisovitexin, isoorientin, and cucurbitacin I of Citrullus colocynthis may act as inhibitors for maltase-glucoamylase.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 41(14): 6822-6833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35983619

RESUMO

Coronavirus infection is a communicable disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged as a global pandemic with deteriorating effect on the world's population. Main protease (Mpro) of SARS-CoV-2 plays a significant role in the viral replication, transcription and disease propagation as well as a potential candidate for drug discovery and development for COVID-19 infection. The current study employed state of art structure-based drug discovery to decipher the role of phytochemicals of Tephrosia purpurea against Mpro. Tephrosia purpurea is being used as a traditional medicinal plant for the treatment of cough, breathlessness and fever as per the Indian Materia Medica. Screening of the phytochemicals of Tephrosia purpurea against Mpro was performed using molecular docking approach to identify the top 5 hits (+)-tephrorin B, deguelin, vitamin p, lanceolarin and 3beta-hydroxy-20(29)-lupene with binding energy of -8.4, -8.1, -8.0, -7.8, and -7.8 kcal/mol, respectively. Furthermore, identified top 5 hits were subjected to drug-likeness and toxicity prediction as well as MM-GBSA calculation. Out of the five molecules four molecules were predicted not to comprise any mutagenic and carcinogenic effects. Top two molecules based on the drug-likeness properties for oral bio-availability were further analysed by molecular dynamics simulation at 100 ns timescale. It was observed from the dynamic behaviour of the two complexes that the addition of these molecules changed the conformation and stability of the apo protein; thus may act as inhibitors for Mpro.Communicated by Ramaswamy H. Sarma.

4.
PLoS One ; 15(10): e0239594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33021988

RESUMO

Beneficial microbes are all around us and it remains to be seen, whether all diseases and disorders can be prevented or treated with beneficial microbes. In this study, the presence of various beneficial bacteria were identified from the sediments of Indian major Rivers Ganga and Yamuna from nine different sites using a metagenomic approach. The metagenome sequence analysis using the Kaiju Web server revealed the presence of 69 beneficial bacteria. Phylogenetic analysis among these bacterial species revealed that they were highly diverse. Relative abundance analysis of these bacterial species is highly correlated with different pollution levels among the sampling sites. The PCA analysis revealed that Lactobacillus spp. group of beneficial bacteria are more associated with sediment sampling sites, KAN-2 and ND-3; whereas Bacillus spp. are more associated with sites, FAR-2 and ND-2. This is the first report revealing the richness of beneficial bacteria in the Indian rivers, Ganga and Yamuna. The study might be useful in isolating different important beneficial microorganisms from these river sediments, for possible industrial applications.


Assuntos
Sedimentos Geológicos/microbiologia , Metagenoma , Rios/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Índia , Microbiota , Filogenia , Microbiologia da Água
5.
Int J Mycobacteriol ; 8(3): 252-261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31512601

RESUMO

Background: The increasing incidence of multidrug-resistant cases of tuberculosis (TB) and difficulty in treating these cases requires an urgent need to find an effective anti-TB drug. There are many phytochemicals with reported antibacterial and antitubercular activities. Instead of targeting only a single target of Mycobacterium tuberculosis (MTB), this study aims to identify phytochemicals targeting multiple drug targets of MTB through subtractive genomic/proteomic approach followed by in silico screening of phytochemicals with reported anti-TB activity. Methods: Of 614 essential genes of MTB reported in database of essential genes, 15 gene products were selected using different bioinformatic resources and tools such as PANTHER, Venny, NCBI, and BLAST. Results: Virtual screening analysis of these selected drug targets against identified 148 phytochemicals revealed that amentoflavone, carpaine, 13'bromo-tiliacorinine, and 2'nortiliacorinine, able to inhibit more than one target of MTB. Conclusion: These selected compounds may be proposed as potential inhibitors of MTB and need to be tested in TB culture studies in vitro to assess their anti-TB activity.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Descoberta de Drogas , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Compostos Fitoquímicos/farmacologia , Antituberculosos/isolamento & purificação , Biologia Computacional , Simulação por Computador , Genômica , Compostos Fitoquímicos/isolamento & purificação , Proteômica , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA