Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res ; 83(3): 363-373, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36459564

RESUMO

The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type-specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprecedented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies. SIGNIFICANCE: The IMMUcan scDB database is an accessible supportive tool to analyze and decipher tumor-associated single-cell RNA sequencing data, allowing researchers to maximally use this data to provide new insights into cancer biology.


Assuntos
Neoplasias , Software , Humanos , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Neoplasias/genética , Análise de Célula Única , Microambiente Tumoral/genética
2.
J Cell Sci ; 135(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254574

RESUMO

T follicular helper (Tfh) cells regulate humoral responses and present a marked phenotypic and functional diversity. Type 1 Tfh (Tfh1) cells were recently identified and associated with disease severity in infection and autoimmune diseases. The cellular and molecular requirements to induce human Tfh1 differentiation are not known. Here, using single-cell RNA sequencing (scRNAseq) and protein validation, we report that human blood CD1c+ dendritic cells (DCs) activated by GM-CSF (also known as CSF2) drive the differentiation of naive CD4+ T cells into Tfh1 cells. These Tfh1 cells displayed typical Tfh molecular features, including high levels of PD-1 (encoded by PDCD1), CXCR5 and ICOS. They co-expressed BCL6 and TBET (encoded by TBX21), and secreted large amounts of IL-21 and IFN-γ (encoded by IFNG). Mechanistically, GM-CSF triggered the emergence of two DC sub-populations defined by their expression of CD40 and ICOS ligand (ICOS-L), presenting distinct phenotypes, morphologies, transcriptomic signatures and functions. CD40High ICOS-LLow DCs efficiently induced Tfh1 differentiation in a CD40-dependent manner. In patients with mild COVID-19 or latent Mycobacterium tuberculosis infection, Tfh1 cells were positively correlated with a CD40High ICOS-LLow DC signature in scRNAseq of peripheral blood mononuclear cells or blood transcriptomics, respectively. Our study uncovered a novel CD40-dependent Tfh1 axis with potential physiopathological relevance to infection. This article has an associated First Person interview with the first author of the paper.


Assuntos
COVID-19 , Células T Auxiliares Foliculares , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Leucócitos Mononucleares , Células Dendríticas
3.
Front Immunol ; 13: 790334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222375

RESUMO

The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro. Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19.


Assuntos
Betacoronavirus/fisiologia , COVID-19/imunologia , Resfriado Comum/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Antígenos Virais/imunologia , COVID-19/mortalidade , COVID-19/terapia , Reações Cruzadas , Feminino , Humanos , Imunidade Heteróloga , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida
4.
Allergy ; 77(5): 1486-1498, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689335

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a frequent and heterogeneous inflammatory skin disease, for which personalized medicine remains a challenge. High-throughput approaches have improved understanding of the complex pathophysiology of AD. However, a purely data-driven AD classification is still lacking. METHODS: To address this question, we applied an original unsupervised approach on the largest available transcriptome dataset of AD lesional (n = 82) and healthy (n = 213) skin biopsies. RESULTS: Taking into account pathological and physiological state, a variance-based filtering revealed 222 AD-specific hyper-variable genes that efficiently classified the AD samples into 4 clusters that turned out to be clinically and biologically distinct. Comparison of gene expressions between clusters identified 3 sets of upregulated genes used to derive metagenes (MGs): MG-I (19 genes) was associated with IL-1 family signaling (including IL-36A and 36G) and skin remodeling, MG-II (23 genes) with negative immune regulation (including IL-34 and 37) and skin architecture, and MG-III (17 genes) with B lymphocyte immunity. Sample clusters differed in terms of disease severity (p = .02) and S. aureus (SA) colonization (p = .02). Cluster 1 contained the most severe AD, highest SA colonization, and overexpressed MG-I. Cluster 2 was characterized by less severe AD, low SA colonization, and high MG-II expression. Cluster 3 included mild AD, mild SA colonization, and mild expression of all MGs. Cluster 4 had the same clinical features as cluster 3 but had hyper-expression of MG-III. Last, we successfully validated our method and results in an independent cohort. CONCLUSION: Our study revealed unrecognized AD endotypes with specific underlying biological pathways, highlighting novel pathophysiological mechanisms. These data could provide new insights into personalized treatment strategies.


Assuntos
Dermatite Atópica , Adulto , Humanos , Índice de Gravidade de Doença , Pele/patologia , Staphylococcus aureus/genética , Transcriptoma
5.
Nat Cell Biol ; 23(5): 538-551, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972731

RESUMO

COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we perform single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: (1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore the defective immune defence.


Assuntos
Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Antivirais/imunologia , COVID-19/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Humanos , Monócitos/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA