Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant J ; 95(1): 168-182, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681058

RESUMO

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Assuntos
Bryopsida/genética , Conjuntos de Dados como Assunto , Genes de Plantas/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/genética
2.
New Phytol ; 211(3): 952-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27257104

RESUMO

Dispersal is a key step in land plant life cycles, usually via formation of spores or seeds. Regulation of spore- or seed-germination allows control over the timing of transition from one generation to the next, enabling plant dispersal. A combination of environmental and genetic factors determines when seed germination occurs. Endogenous hormones mediate this decision in response to the environment. Less is known about how spore germination is controlled in earlier-evolving nonseed plants. Here, we present an in-depth analysis of the environmental and hormonal regulation of spore germination in the model bryophyte Physcomitrella patens (Aphanoregma patens). Our data suggest that the environmental signals regulating germination are conserved, but also that downstream hormone integration pathways mediating these responses in seeds were acquired after the evolution of the bryophyte lineage. Moreover, the role of abscisic acid and diterpenes (gibberellins) in germination assumed much greater importance as land plant evolution progressed. We conclude that the endogenous hormone signalling networks mediating germination in response to the environment may have evolved independently in spores and seeds. This paves the way for future research about how the mechanisms of plant dispersal on land evolved.


Assuntos
Bryopsida/embriologia , Bryopsida/genética , Redes Reguladoras de Genes , Germinação/genética , Sementes/embriologia , Sementes/genética , Ácido Abscísico/biossíntese , Ácido Abscísico/farmacologia , Bryopsida/efeitos dos fármacos , Bryopsida/efeitos da radiação , Temperatura Baixa , Diterpenos/farmacologia , Diterpenos do Tipo Caurano/biossíntese , Meio Ambiente , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos da radiação , Genes de Plantas , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Temperatura Alta , Lactonas/farmacologia , Luz , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Dormência de Plantas/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Esporos/efeitos dos fármacos , Esporos/genética , Esporos/efeitos da radiação , Sacarose/farmacologia
3.
New Phytol ; 211(3): 940-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27040616

RESUMO

Armadillo-related proteins regulate development throughout eukaryotic kingdoms. In the flowering plant Arabidopsis thaliana, Armadillo-related ARABIDILLO proteins promote multicellular root branching. ARABIDILLO homologues exist throughout land plants, including early-diverging species lacking true roots, suggesting that early-evolving ARABIDILLOs had additional biological roles. Here we investigated, using molecular genetics, the conservation and diversification of ARABIDILLO protein function in plants separated by c. 450 million years of evolution. We demonstrate that ARABIDILLO homologues in the moss Physcomitrella patens regulate a previously undiscovered inhibitory effect of abscisic acid (ABA) on spore germination. Furthermore, we show that A. thaliana ARABIDILLOs function similarly during seed germination. Early-diverging ARABIDILLO homologues from both P. patens and the lycophyte Selaginella moellendorffii can substitute for ARABIDILLO function during A. thaliana root development and seed germination. We conclude that (1) ABA was co-opted early in plant evolution to regulate functionally analogous processes in spore- and seed-producing plants and (2) plant ARABIDILLO germination functions were co-opted early into both gametophyte and sporophyte, with a specific rooting function evolving later in the land plant lineage.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Bryopsida/metabolismo , Sequência Conservada , Germinação , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Selaginellaceae/metabolismo , Arabidopsis/efeitos dos fármacos , Bryopsida/efeitos dos fármacos , Germinação/efeitos dos fármacos , Mutação/genética , Sementes/efeitos dos fármacos , Selaginellaceae/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Esporos/metabolismo
4.
PLoS One ; 8(2): e57149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468922

RESUMO

The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.


Assuntos
Células Epiteliais/metabolismo , Resposta ao Choque Térmico , Canais de Cátion TRPV/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Humanos , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Canais de Cátion TRPV/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Planta ; 236(6): 1927-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22945313

RESUMO

ARABIDILLO proteins regulate multicellular root development in Arabidopsis thaliana. Conserved ARABIDILLO homologues are present throughout land plants, even in early-evolving plants that do not possess complex root architecture, suggesting that ARABIDILLO genes have additional functions. Here, we have cloned and characterised ARABIDILLO gene homologues from two early-evolving land plants, the bryophyte Physcomitrella patens and the lycophyte Selaginella moellendorffii. We show that two of the PHYSCODILLO genes (PHYSCODILLO1A and -1B) exist as a tail-to-tail tandem array of two almost identical 12 kb sequences, while a third related gene (PHYSCODILLO2) is located elsewhere in the Physcomitrella genome. Physcomitrella possesses a very low percentage of tandemly arrayed genes compared with the later-evolving plants whose genomes have been sequenced to date. Thus, PHYSCODILLO1A and -1B genes represent a relatively unusual gene arrangement. PHYSCODILLO promoters are active largely in the haploid gametophyte, with additional activity at the foot of the sporophyte. The pattern of promoter activity is uniform in filamentous and leafy tissues, suggesting pleiotropic gene functions and likely functional redundancy: the latter possibility is confirmed by the lack of discernible phenotype in a physcodillo2 deletion mutant. Interestingly, the pattern of PHYSCODILLO promoter activity in female reproductive organs is strikingly similar to that of an Arabidopsis homologue, suggesting co-option of some PHYSCODILLO functions or regulation into both the sporophyte and gametophyte. In conclusion, our work identifies and characterises some of the earliest-evolving land plant ARABIDILLO homologues. We confirm that all land plant ARABIDILLO genes arose from a single common ancestor and suggest that PHYSCODILLO proteins have novel and pleiotropic functions, some of which may be conserved in later-evolving plants.


Assuntos
Bryopsida/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Selaginellaceae/genética , Arabidopsis/genética , Sequência de Bases , Bryopsida/citologia , Bryopsida/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Dados de Sequência Molecular , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Selaginellaceae/citologia , Selaginellaceae/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
6.
Plant Cell ; 24(8): 3333-48, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22904147

RESUMO

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Bryopsida/fisiologia , Membrana Celular/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Cálcio/metabolismo , Membrana Celular/genética , Biologia Computacional , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Citoplasma/genética , Citoplasma/metabolismo , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Resposta ao Choque Térmico , Temperatura Alta , Dados de Sequência Molecular , Fenótipo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Fatores de Tempo
7.
Trends Plant Sci ; 17(1): 39-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22051150

RESUMO

Glycogen synthase kinase 3 (GSK3) proteins, also known as SHAGGY-like kinases, have many important cell signalling roles in animals, fungi and amoebae. In particular, GSK3s participate in key developmental signalling pathways and also regulate the cytoskeleton. GSK3-encoding genes are also present in all land plants and in algae and protists, raising questions about possible ancestral functions in eukaryotes. Recent studies have revealed that plant GSK3 proteins are actively implicated in hormonal signalling networks during development as well as in biotic and abiotic stress responses. In this review, we outline the mechanisms of Arabidopsis GSK3 action, summarize GSK3 functions in dicot and monocot flowering plants, and speculate on the possible functions of GSK3s in the earliest-evolving land plants.


Assuntos
Arabidopsis/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Magnoliopsida/enzimologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Evolução Biológica , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Magnoliopsida/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Estresse Fisiológico
8.
New Phytol ; 190(3): 556-65, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21138439

RESUMO

An accurate assessment of the rising ambient temperature by plant cells is crucial for the timely activation of various molecular defences before the appearance of heat damage. Recent findings have allowed a better understanding of the early cellular events that take place at the beginning of mild temperature rise, to timely express heat-shock proteins (HSPs), which will, in turn, confer thermotolerance to the plant. Here, we discuss the key components of the heat signalling pathway and suggest a model in which a primary sensory role is carried out by the plasma membrane and various secondary messengers, such as Ca(2+) ions, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). We also describe the role of downstream components, such as calmodulins, mitogen-activated protein kinases and Hsp90, in the activation of heat-shock transcription factors (HSFs). The data gathered for land plants suggest that, following temperature elevation, the heat signal is probably transduced by several pathways that will, however, coalesce into the final activation of HSFs, the expression of HSPs and the onset of cellular thermotolerance.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Plantas/metabolismo , Transdução de Sinais , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia
10.
Plant Signal Behav ; 5(12): 1530-3, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21139423

RESUMO

Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patens demonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.


Assuntos
Cálcio/metabolismo , Resposta ao Choque Térmico , Temperatura Alta , Lipídeos de Membrana/metabolismo , Bryopsida/metabolismo , Bryopsida/fisiologia , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Transporte de Íons
11.
Plant Signal Behav ; 4(5): 457-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19816109

RESUMO

The constitutive Cauliflower Mosaic Virus 35S promoter (CaMV 35S) is widely used as a tool to express recombinant proteins in plants, but with different success. We previously showed that the expression of an F-actin marker, GFP-talin, in Physcomitrella patens using the CaMV 35S promoter failed to homogenously label moss tissues. Here, we show a significant diminution of the GFP fluorescence in dark grown old moss cells and complete lack of labelling in newly differentiated cells. Furthermore, we demonstrate that stable moss lines harbouring a resistance cassette driven by the CaMV 35S are unable to grow in darkness in the presence of the antibiotic. In contrast to the CaMV 35S, the heat inducible promoter, hsp17.3B showed uniform expression pattern in all cells and tissues following a mild heat shock.

12.
Plant Cell ; 21(9): 2829-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19773386

RESUMO

Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.


Assuntos
Briófitas/fisiologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Resposta ao Choque Térmico/fisiologia , Briófitas/genética , Eletrofisiologia , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico
13.
Cell Motil Cytoskeleton ; 65(10): 769-84, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18613119

RESUMO

The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.


Assuntos
Actinas/metabolismo , Bryopsida/genética , Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas de Plantas/genética , Subunidades Proteicas/genética , Actinas/química , Sequência de Bases , Bryopsida/citologia , Bryopsida/crescimento & desenvolvimento , Ensaios de Migração Celular , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Plant Cell Environ ; 30(6): 753-63, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17470151

RESUMO

The ability to detect early molecular responses to various chemicals is central to the understanding of biological impact of pollutants in a context of varying environmental cues. To monitor stress responses in a model plant, we used transgenic moss Physcomitrella patens expressing the beta-glucuronidase reporter (GUS) under the control of the stress-inducible promoter hsp17.3B. Following exposure to pollutants from the dye and paper industry, GUS activity was measured by monitoring a fluorescent product. Chlorophenols, heavy metals and sulphonated anthraquinones were found to specifically activate the hsp17.3B promoter (within hours) in correlation with long-term toxicity effects (within days). At mildly elevated physiological temperatures, the chemical activation of this promoter was strongly amplified, which considerably increased the sensitivity of the bioassay. Together with the activation of hsp17.3B promoter, chlorophenols induced endogenous chaperones that transiently protected a recombinant thermolabile luciferase (LUC) from severe heat denaturation. This sensitive bioassay provides an early warning molecular sensor to industrial pollutants under varying environments, in anticipation to long-term toxic effects in plants. Because of the strong cross-talk between abiotic and chemical stresses that we find, this P. patens line is more likely to serve as a direct toxicity bioassay for pollutants combined with environmental cues, than as an indicator of absolute toxicity thresholds for various pollutants. It is also a powerful tool to study the role of heat shock proteins (HSPs) in plants exposed to combined chemical and environmental stresses.


Assuntos
Técnicas Biossensoriais , Bryopsida/fisiologia , Clorofenóis/toxicidade , Poluentes Ambientais/toxicidade , Resposta ao Choque Térmico , Western Blotting , Clorofenóis/análise , Poluentes Ambientais/análise , Plantas Geneticamente Modificadas/fisiologia
15.
New Phytol ; 174(1): 63-76, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17335498

RESUMO

* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.


Assuntos
Actinas/fisiologia , Bryopsida/crescimento & desenvolvimento , Citoesqueleto de Actina/metabolismo , Actinas/química , Bryopsida/citologia , Bryopsida/genética , Bryopsida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Glycine max/genética , Talina/genética
16.
Plant Mol Biol ; 59(5): 697-711, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16270224

RESUMO

The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using beta-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins. In stably transformed moss lines, Gmhsp17.3B-driven GUS expression was extremely low at 25 degrees C. In contrast, a short non-damaging heat-treatment at 38 degrees C rapidly induced reporter expression over three orders of magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell types and tissues. Induction levels were tightly proportional to the temperature and duration of the heat treatment, allowing fine-tuning of protein expression. Repeated heating/cooling cycles led to the massive GUS accumulation, up to 2.3% of the total soluble proteins. The anti-inflammatory drug acetyl salicylic acid (ASA) and the membrane-fluidiser benzyl alcohol (BA) also induced GUS expression at 25 degrees C, allowing the production of recombinant proteins without heat-treatment. The Gmhsp17.3B promoter thus provides a reliable versatile conditional promoter for the controlled expression of recombinant proteins in the moss P. patens.


Assuntos
Biotecnologia/métodos , Bryopsida/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Aspirina/farmacologia , Álcool Benzílico/farmacologia , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Relação Dose-Resposta a Droga , Indução Enzimática , Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA