Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Clin Immunol ; 258: 109872, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113963

RESUMO

Pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure associated with high mortality. Despite progress in our understanding of the pathological mechanism causing the crippling illness, there are currently no targeted pharmaceutical treatments available for it. Recent discoveries have emphasized the existence of a potential nexus between gut and lung health fueling novel approaches including probiotics for the treatment of ARDS. We thus investigated the prophylactic-potential of Lactobacillus rhamnosus-(LR) in lipopolysaccharide (LPS)-induced pulmonary and cecal ligation puncture (CLP) induced extrapulmonary ARDS mice. Our in-vivo findings revealed that pretreatment with LR significantly ameliorated vascular-permeability (edema) of the lungs via modulating the neutrophils along with significantly reducing the expression of inflammatory-cytokines in the BALF, lungs and serum in both pulmonary and extrapulmonary mice-models. Interestingly, our ex-vivo immunofluorescence and flow cytometric data suggested that mechanistically LR via short chain fatty acids (butyrate being the most potent and efficient in ameliorating the pathophysiology of both pulmonary and extra-pulmonary ARDS) targets the phagocytic and neutrophils extracellular traps (NETs) releasing potential of neutrophils. Moreover, our in-vivo data further corroborated our ex-vivo findings and suggested that butyrate exhibits enhanced potential in ameliorating the pathophysiology of ARDS via reducing the infiltration of neutrophils into the lungs. Altogether, our study establishes the prophylactic role of LR and its associated metabolites in the prevention and management of both pulmonary and extrapulmonary ARDS via targeting neutrophils.


Assuntos
Lacticaseibacillus rhamnosus , Síndrome do Desconforto Respiratório , Animais , Camundongos , Neutrófilos/metabolismo , Pulmão/patologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/etiologia , Butiratos/metabolismo , Lipopolissacarídeos
2.
Front Immunol ; 14: 1138145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153623

RESUMO

Leprosy is a chronic bacterial disease caused by Mycobacterium leprae. Leprosy patients have been found to have defects in T cells activation, which is critical to the clearance of the bacilli. Treg cell suppression is mediated by inhibitory cytokines such as IL10, IL-35 and TGF-ß and its frequency is higher in leprosy patients. Activation and overexpression of programmed death 1 (PD-1) receptor is considered to one of the pathways to inhibit T-cell response in human leprosy. In the current study we address the effect of PD-1 on Tregs function and its immuno-suppressive function in leprosy patients. Flow cytometry was used to evaluate the expression of PD-1 and its ligands on various immune cells T cells, B cells, Tregs and monocytes. We observed higher expression of PD-1 on Tregs is associated with lower production of IL-10 in leprosy patients. PD-1 ligands on T cells, B cells, Tregs and monocytes found to be higher in the leprosy patients as compared to healthy controls. Furthermore, in vitro blocking of PD-1 restores the Tregs mediated suppression of Teff and increase secretion of immunosuppressive cytokine IL-10. Moreover, overexpression of PD-1 positively correlates with disease severity as well as Bacteriological Index (BI) among leprosy patients. Collectively, our data suggested that PD-1 overexpression on various immune cells is associated with disease severity in human leprosy. Manipulation and inhibition of PD-1 signaling pathway on Tregs alter and restore the Treg cell suppression activity in leprosy patients.


Assuntos
Interleucina-10 , Hanseníase , Humanos , Interleucina-10/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Mycobacterium leprae , Linfócitos T Reguladores , Citocinas/metabolismo
3.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672152

RESUMO

Osteoporosis is a systemic skeletal disease characterised by low bone mineral density (BMD), degeneration of bone micro-architecture, and impaired bone strength. Cissus quadrangularis (CQ), popularly known as Hadjod (bone setter) in Hindi, is a traditional medicinal herb exhibiting osteoprotective potential in various bone diseases, especially osteoporosis and fractures. However, the cellular mechanisms underpinning its direct effect on bone health through altering the host immune system have never been elucidated. In the present study, we interrogated the osteoprotective and immunoporotic (the osteoprotective potential of CQ via modulating the host immune system) potential of CQ in preventing inflammatory bone loss under oestrogen-deficient conditions. The current study outlines the CQ's osteoprotective potential under both ex vivo and in vivo (ovariectomized) conditions. Our ex vivo data demonstrated that, in a dose-dependent manner CQ, suppresses the RANKL-induced osteoclastogenesis (p < 0.001) as well as inhibiting the osteoclast functional activity (p < 0.001) in mouse bone marrow cells (BMCs). Our in vivo µ-CT and flow cytometry data further showed that CQ administration improves bone health and preserves bone micro-architecture by markedly raising the proportion of anti-osteoclastogenic immune cells, such as Th1 (p < 0.05), Th2 (p < 0.05), Tregs (p < 0.05), and Bregs (p < 0.01), while concurrently lowering the osteoclastogenic Th17 cells in bone marrow, mesenteric lymph nodes, Peyer's patches, and spleen in comparison to the control group. Serum cytokine analysis further supported the osteoprotective and immunoporotic potential of CQ, showing a significant increase in the levels of anti-osteoclastogenic cytokines (p < 0.05) (IFN-γ, IL-4, and IL-10) and a concurrent decrease in the levels of osteoclastogenic cytokines (p < 0.05) (TNF-α, IL-6, and IL-17). In conclusion, our data for the first time delineates the novel cellular and immunological mechanism of the osteoprotective potential of CQ under postmenopausal osteoporotic conditions.


Assuntos
Doenças Ósseas Metabólicas , Cissus , Osteoporose , Camundongos , Animais , Osteogênese , Densidade Óssea , Osteoporose/tratamento farmacológico , Estrogênios , Citocinas
4.
Front Cell Infect Microbiol ; 12: 964265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034704

RESUMO

An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It's continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome.


Assuntos
COVID-19 , Brasil , Linfócitos T CD8-Positivos , Humanos , SARS-CoV-2 , Subpopulações de Linfócitos T
5.
Inflamm Res ; 71(9): 1025-1040, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35900380

RESUMO

BACKGROUND: SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper-Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells-DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts-OBs and osteoclasts-OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002-2004 revealed the long-term negative impact (decreased bone mineral density-BMDs) of these infections on bone health. METHODOLOGY: We used the keywords "immunopathogenesis of SARS-CoV-2," "SARS-CoV-2 and bone cells," "factors influencing bone health and COVID-19," "GUT microbiota," and "COVID-19 and Bone health" to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus. CONCLUSION: Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota-GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.


Assuntos
COVID-19 , Densidade Óssea , Citocinas , Disbiose , Humanos , Interleucina-17 , SARS-CoV-2 , Fator de Necrose Tumoral alfa
6.
Front Immunol ; 13: 875788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693779

RESUMO

Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between osteo-immune systems. These discoveries fuel novel approaches for the treatment of several bone pathologies including osteoporosis. Bifidobacterium longum (BL) is a preferred probiotic of choice due to its varied immunomodulatory potential in alleviating various inflammatory diseases. Here, we evaluate the effect of BL in an ovariectomy (ovx)-induced post-menopausal osteoporotic mouse model. Our in vitro findings reveal that BL suppresses the differentiation and functional activity of RANKL-induced osteoclastogenesis in both mouse bone marrow cells and human PBMCs. Strikingly, BL-induced Bregs were found to be significantly more efficient in suppressing osteoclastogenesis and modulating Treg-Th17 cell balance with respect to control Bregs in vitro. Our in vivo µCT and bone mechanical strength data further confirm that BL supplementation significantly enhanced bone mass and bone strength, along with improving the bone microarchitecture in ovx mice. Remarkably, alterations in frequencies of CD19+CD1dhiCD5+IL-10+ Bregs, CD4+Foxp3+IL-10+ Tregs, and CD4+Rorγt+IL-17+ Th17 cells in distinct lymphoid organs along with serum-cytokine data (enhanced anti-osteoclastogenic cytokines IFN-γ and IL-10 and reduced osteoclastogenic-cytokines IL-6, IL-17, and TNF-α) strongly support the immunomodulatory potential of BL. Altogether, our findings establish a novel osteo-protective and immunomodulatory potential of BL in augmenting bone health under osteoporotic conditions.


Assuntos
Linfócitos B Reguladores , Bifidobacterium longum , Animais , Citocinas , Feminino , Humanos , Interleucina-10 , Interleucina-17 , Camundongos , Osteogênese , Ovariectomia/efeitos adversos
7.
Cytokine ; 152: 155821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151928

RESUMO

Leprosy type 1 reaction (T1R) is a cell-mediated inflammatory reaction which involves skin and peripheral nerves in leprosy. Lesions with T1R have higher production of IL-17 cytokine from CD4+ T cells along with lower TGF-ß producing FOXP3+ CD4+ Tregs. IL-21 is an important cytokine that promotes the development and stability of Th17 cells in an autocrine manner. It can play an important role in the pathogenesis of T1R in leprosy. However, the mechanism by which IL-21 influences the pathogenic progress of leprosy T1R remains poorly understood. In the present study, we evaluated the expression of IL-21 cytokine in skin lesions of both non-reactional (NR) and T1R via immuno-histochemistry and quantitative PCR (qPCR). Further, expression of various genes (IL-17A, IL-17F, TGF-ß, FOXP3, RORC and IL-21) was also measured by qPCR in cultured cells. We also analyzed the secretion of various cytokines such as of IL-21, IL-17A/F and TGF-ß in the culture supernatants by ELISA. In addition, differentiation of Th17 and Treg cells were studied in PBMC cultures after stimulation with Mycobacterium leprae sonicated antigens and rIL-21 for 48 hrs and the phenotypes of Th17 and Tregs were determined by flowcytometric analysis. Our results clearly indicate that IL-21+T cells were significantly higher in both peripheral blood and skin lesions of T1R as compared to NR patients. Moreover, we observed that recombinant IL-21 cytokine inhibited TGF-ß producing Treg cells differentiation along with up-regulating Th17 cells under in-vitro conditions. The gene expression of IL-21 was significantly negatively correlated with Treg and positively correlated with Th17 cell markers in T1R patients. Our results suggested that IL-21 promotes T1R mediated inflammation via modulating the balance of Th17 and Treg cell populations.


Assuntos
Hipersensibilidade , Hanseníase , Citocinas , Fatores de Transcrição Forkhead , Humanos , Inflamação , Interleucina-17/metabolismo , Interleucinas , Leucócitos Mononucleares/metabolismo , Linfócitos T Reguladores , Células Th17 , Fator de Crescimento Transformador beta/metabolismo
8.
Int Rev Immunol ; 41(2): 171-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33641587

RESUMO

The Coronavirus Disease-2019 (COVID-19) imposed public health emergency and affected millions of people around the globe. As of January 2021, 100 million confirmed cases of COVID-19 along with more than 2 million deaths were reported worldwide. SARS-CoV-2 infection causes excessive production of pro-inflammatory cytokines thereby leading to the development of "Cytokine Storm Syndrome." This condition results in uncontrollable inflammation that further imposes multiple-organ-failure eventually leading to death. SARS-CoV-2 induces unrestrained innate immune response and impairs adaptive immune responses thereby causing tissue damage. Thus, understanding the foremost features and evolution of innate and adaptive immunity to SARS-CoV-2 is crucial in anticipating COVID-19 outcomes and in developing effective strategies to control the viral spread. In the present review, we exhaustively discuss the sequential key immunological events that occur during SARS-CoV-2 infection and are involved in the immunopathogenesis of COVID-19. In addition to this, we also highlight various therapeutic options already in use such as immunosuppressive drugs, plasma therapy and intravenous immunoglobulins along with various novel potent therapeutic options that should be considered in managing COVID-19 infection such as traditional medicines and probiotics.


Assuntos
COVID-19 , Imunidade Adaptativa , Síndrome da Liberação de Citocina , Humanos , Imunidade Inata , SARS-CoV-2
9.
Sci Rep ; 11(1): 1807, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469043

RESUMO

Osteoporosis is a systemic-skeletal disorder characterized by enhanced fragility of bones leading to increased rates of fractures and morbidity in large number of populations. Probiotics are known to be involved in management of various-inflammatory diseases including osteoporosis. But no study till date had delineated the immunomodulatory potential of Lactobacillus rhamnosus (LR) in bone-health. In the present study, we examined the effect of probiotic-LR on bone-health in ovariectomy (Ovx) induced postmenopausal mice model. In the present study, we for the first time report that LR inhibits osteoclastogenesis and modulates differentiation of Treg-Th17 cells under in vitro conditions. We further observed that LR attenuates bone loss under in vivo conditions in Ovx mice. Both the cortical and trabecular bone-content of Ovx+LR treated group was significantly higher than Ovx-group. Remarkably, the percentage of osteoclastogenic CD4+Rorγt+Th17 cells at distinct immunological sites such as BM, spleen, LN and PP were significantly reduced, whereas the percentage of anti-osteoclastogenic CD4+Foxp3+Tregs and CD8+Foxp3+Tregs were significantly enhanced in LR-treated group thereby resulting in inhibition of bone loss. The osteoprotective role of LR was further supported by serum cytokine data with a significant reduction in osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with enhancement in anti-osteoclastogenic cytokines (IL-4, IL-10, IFN-γ) in LR treated-group. Altogether, the present study for the first time establishes the osteoprotective role of LR on bone health, thus highlighting the immunomodulatory potential of LR in the treatment and management of various bone related diseases including osteoporosis.


Assuntos
Lacticaseibacillus rhamnosus/fisiologia , Osteoporose/prevenção & controle , Linfócitos T Reguladores/fisiologia , Células Th17/citologia , Animais , Feminino , Camundongos , Ovariectomia
10.
Sci Rep ; 10(1): 15143, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934336

RESUMO

Th17 cells play vital role during pathogenesis of leprosy reactions. Previously, we have reported that IL-23 is involved in Th17 cells differentiation. Subsequently, our group also showed that IL-6 induces Th17 cell differentiation along with TGF-ß in leprosy reactions. Here, we next asked the question that whether IL-6 or IL-23 induced Th17 cells are different in nature? In this study, Type 1 Reactions (T1R) showed significantly (p < 0.001) higher percentage of IL-17A producing CD4+IL6R+ T cells as compared to non-reaction (NR) patients. Furthermore, recombinant IL-6, IL-23 and TGF-ß promoted IL-17A secretion by CD4+IL6R+ T cells. Subsequently, IL-6R and IL-23R blocking experiments showed significantly (p < 0.002) down regulated IL-17A in T1R reaction as compared to NR leprosy patients. The present study for the first time establishes that pathogenic Th17 cells produce IL-17 in an IL-6 dependent manner in leprosy T1R reactions. Thus, present approaches that specifically target Th17 cells and/or the cytokines that promote their development, such as IL-6, TGF-ß and IL-23A may provide more focused treatment strategies for the management of Mycobacterium leprae and its reactions.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-6/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Receptores de Interleucina-6/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Adolescente , Adulto , Feminino , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Hanseníase/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Masculino , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
11.
Front Immunol ; 11: 1974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849660

RESUMO

Leprosy is a chronic bacterial disease caused by Mycobacterium leprae. Cytokines are known to play vital role as a peacekeeper during inflammatory and other immunocompromised conditions such as leprosy. This study has tried to bridge the gap of information on cytokine gene polymorphisms and its potential role in the pathogenesis of leprosy. Interleukin-10 (IL-10) is an immunosuppressive cytokine, found to be elevated in leprosy that accounted for the suppression of host's immune system by regulating the functions of other immune cells. T helper cells and T regulatory (Tregs) cells are the major source of IL-10 in lepromatous leprosy patients. In this study, we have documented the association of IL-10 cytokine gene polymorphism with the disease progression. A total of 132 lepromatous leprosy patients and 120 healthy controls were analyzed for IL-10 cytokine gene polymorphisms using PCR-SSP assay and flow cytometry was used to analyze IL-10 secretion by CD4 and Tregs in various genotype of leprosy patients. The frequencies of IL-10 (-819) TT and IL-10 (-1082) GG genotypes were significantly higher in leprosy patients as compared to healthy controls. This observation advocates that these genotypes were associated with the susceptibility and development of the disease. In addition, flow cytometry analysis demonstrated an increased number of IL-10 producing CD4 and Treg cells in IL-10 (819) TT genotype compared to CT and CC genotypes. These observations were further supported by immunohistochemical studies. Therefore, we can conclude that IL-10 cytokine gene polymorphisms by affecting its production can determine the predilection and progression of leprosy in the study population.


Assuntos
Suscetibilidade a Doenças , Interleucina-10/biossíntese , Interleucina-10/genética , Hanseníase/etiologia , Polimorfismo de Nucleotídeo Único , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto , Alelos , Estudos de Casos e Controles , Citocinas/genética , Citocinas/metabolismo , Progressão da Doença , Feminino , Expressão Gênica , Genótipo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Hanseníase/diagnóstico , Hanseníase/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Cytokine ; 126: 154873, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629113

RESUMO

Type 1 reactions (T1R) an inflammatory condition, of local skin patches in 30-40% leprosy patients during the course of MDT. IL-17A and IL-17F play an important role in regulating skin inflammation through neutrophils. In the present study, we have analyzed 18 of each T1R and Non-reactions (NR) patients through flow cytometry and qPCR. Interestingly we found that, CD3+CD4+ gated IL-17A+IL-17F+ cells were significantly high in T1R in both MLSA stimulated PBMCs and skin lesions as compared to NR leprosy patients. Hierarchical clustering analysis of gene expression showed that CXCL6, CXCL5, CCL20, CCL7, MMP13 and IL-17RB expression were significantly associated with IL-17A and IL-17F expression (Spearman r2 = 0.77 to 0.98), neutrophils and monocyte markers respectively. In this study, the inflammation noted in lesions of T1R is a different phenotype of Th17 which produce double positive IL-17A+IL17F+ and also contributes IL-17 producing neutrophils and thus would be useful for monitoring, diagnosis and treatment response before reactions episodes.


Assuntos
Citocinas/metabolismo , Interleucina-17/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Neutrófilos/metabolismo , Células Th17/metabolismo , Adulto , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL6/genética , Quimiocina CXCL6/metabolismo , Citocinas/genética , Quimioterapia Combinada , Feminino , Citometria de Fluxo , Humanos , Inflamação/genética , Inflamação/metabolismo , Hanseníase/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Família Multigênica , Reação em Cadeia da Polimerase em Tempo Real
13.
J Inflamm Res ; 11: 377-388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319283

RESUMO

BACKGROUND: The clinical forms of cutaneous tuberculosis (CTB) consist of a spectrum that reflects the host's immune response to Mycobacterium tuberculosis; it provides an ideal model to study the immunological dysregulation in humans. IL-17 plays an important role in initial immune response and is involved in both immune-mediated protection and pathology during M. tuberculosis infection. TGF-ß producing regulatory T-cells (Tregs) are high in leprosy patients and responsible for immune suppression. However, in CTB, the involvement of Tregs and Th17 remains unevaluated. OBJECTIVE: To study the role of proinflammatory Th17 and Treg cells in the human CTB. METHODS: Blood and skin biopsies of CTB patients and healthy controls (HC) were included in the study. Flow cytometric analysis of IL-17, FOXP3, and TGF-ß in blood was done followed by immunohistochemistry on paraffin-embedded skin sections. Expression of IFN-γ, TGF-ß, and IL-17 was evaluated by quantitative real-time PCR. RESULTS: We found significant (P<0.0002) lower expression of proinflammatory IL-17 and IFN-γ (P<0.01) in CTB skins as compared to HC. However, the frequency of TGF-ß producing Treg cells was found to be high in CTB patients (P<0.001) as compared to HC. A similar type of profile was observed by flow cytometric analysis. Treg cells produced suppressive cytokine TGF-ß which showed a positive correlation with FOXP3 gene expression. CONCLUSION: Our study found an increase in lineage-specific CD4+ Tregs in CTB as compared to the HC individuals. Such cells secrete TGF-ß, a suppressive cytokine and may play a role in negatively regulating the T-cell immune responses in CTB. In addition, Tregs with TGF-ß may downregulate Th17 cell responses leading to the antigen-specific anergy associated with CTB patients.

14.
Front Immunol ; 9: 1636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083152

RESUMO

Regulatory B cells (Bregs) are known to exhibit their regulatory functions through interleukin-10 (IL-10) cytokine which suppress inflammation. There are only a few studies explaining the phenotype and functioning of these cells in contribution to host immunity in leprosy. Here, we evaluated the role of IL-10 producing Bregs in the pathogenesis of leprosy and assessed their immunoregulatory effects on Tregs and effector T cells. We found an increased frequency of Bregs and increased expression of their immune modulatory molecules (IL-10, FoxP3, and PDL-1) in leprosy patients. The potential immunoregulatory mechanism of Bregs was also investigated using MACS sorted Teff (CD4+CD25-) and Treg (CD4+CD25+) cells were cocultured with Bregs to elucidate the effects of Bregs on effector T and regulatory T cells. Cell coculture results showed that purified Bregs cells from leprosy patients convert CD4+CD25- cells into CD4+CD25+ cells. Cell coculture experiments also demonstrated that leprosy derived IL-10 producing Bregs enhance FoxP3 and PD-1 expression in Tregs and enhanced Tregs activity. Blocking of IL-10 receptor confirmed that IL-10 producing Breg has immunomodulatory effect on Tregs and effector T cells as effector T cells are not converted into Tregs and enhanced expression of FoxP3 and PD-1 was not observed on Tregs. Collectively, these findings demonstrate that IL-10 producing Breg cells play an important mechanism in controlling the immunopathogenesis of leprosy and have an immunomodulatory effect on Tregs and effector T cells. Our findings may pave way for novel targets of IL-10 producing Bregs for immunotherapy in leprosy patients.

15.
Immunol Lett ; 200: 55-65, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30006101

RESUMO

BACKGROUND: Leprosy reactions appear episodically in leprosy patients, which lead to high inflammation, morbidity and peripheral nerve damage. The role of Th17 cell has been well studied in leprosy reactions but the role of γδ or unconventional T cells which is an other major source of IL-17 in many diseases, not studied in leprosy reactional episodes. OBJECTIVE: The aim of the present study to elucidate the role of γδ T cells in leprosy reactions. METHODOLOGY: A total of 40 untreated non-reaction and reactions patients were recruited. PBMCs were isolated and stimulated with M. leprae sonicated antigen (MLSA) for 48 h and immuno-phenotyping was done using flow cytometry. Moreover, γδ T cells were isolated by Magnetic beads technology and mRNA expression of IL-17, IFN-γ, TGF-ß and FOXP3 were analyzed by real-time PCR (qPCR) and cytokine was estimated in the culture supernatant by ELISA. RESULTS: γδ T cells were significantly increased in both Reversal reaction (RR) and Erythema nodosum leprosum (ENL) reaction patients. These cells produced significant amount of IL-17 and IFN-γ. Furthermore, CD3+TCRγδ+ T cells expressed transient FOXP3 with a low amount of TGF-ß in both reactions as compared to stable patients. Moreover, low TGF-ß producing TCR-γδ cells were associated with low phosphorylation of STAT5A. CONCLUSION: This study will add to our understanding of the immunological features that mediate and regulate the pathogenesis of leprosy and may helpful to reduce the immuno-pathogenesis of leprosy reaction by targeting these cells.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Hanseníase/etiologia , Hanseníase/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Antígenos de Superfície/metabolismo , Biomarcadores , Citocinas/metabolismo , Expressão Gênica , Humanos , Imunofenotipagem , Inflamação/patologia , Hanseníase/patologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
16.
Curr Protein Pept Sci ; 19(9): 889-899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28847289

RESUMO

Leprosy is an infectious disease caused by non-cultivable bacteria Mycobacterium leprae. Ridley and Jopling classified the disease into five polar forms, Tuberculoid (TT) and Lepromatous (LL), in between two forms of the disease Borderline tuberculoid (BT), Borderline (BB) and Borderline lepromatous (BL) are laid. The tuberculoid type (BT/TT) leprosy patients show good recall of cellmediated immune (CMI) response and Th1 type of immune response, while lepromatous leprosy (LL) patients show defect in cell-mediated immunity to the causative agent and Th2 type of immune response. Due to distinct clinical and immunological spectra of the disease, leprosy attracted immunologists to consider an ideal model for the study of deregulations of various immune reactions. Recent studies show that Tregs, Th3 (TGF-ß, IL-10), IL-35 producing Treg immune response associated with the immune suppressive environment, survival of bugs. IL-17 producing Th17 immune response associated with tuberculoid leprosy and play protective role. γδ T cells also increased from tuberculoid to lepromatous pole of leprosy. In this review, we will discuss the role of various subtypes of T-cell and their cytokines in the pathogenesis of leprosy.


Assuntos
Hanseníase/imunologia , Linfócitos T/fisiologia , Anticorpos/química , Anticorpos/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Progressão da Doença , Descoberta de Drogas , Humanos , Imunoterapia/métodos , Hanseníase/classificação , Hanseníase/terapia , Mycobacterium leprae , Linfócitos T/patologia , Linfócitos T Reguladores/fisiologia , Células Th1/fisiologia , Células Th2/fisiologia
17.
Immunol Lett ; 184: 61-66, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235552

RESUMO

Leprosy is an ancient disease caused by gram positive, rod shaped bacilli called Mycobacterium leprae. Patients present with varied clinico-pathological disease depending on the host immune response to Mycobacterium leprae. Thus tuberculoid (TT) and lepromatous (LL) patients represent two ends of a spectrum where the former shows limited disease, high T cell mediate immune (CMI) response and low antibody (HI) levels in serum. In contrast the latter has low T cell and high humoral immune response i.e antibody levels. The mechanisms underlying these differences have been investigated intensely; however, there is no consensus on the primary immunological basis. Over three decades, Th1 and Th2 paradigm were thought to underling tuberculoid and lepromatous disease respectively. However many patients were shown to have mixed Th1/Th2 pattern of (IFN-γ/IL-4) cytokines. The present review was undertaken with a view to understand the T cells and cytokine dysregulation in leprosy. In recent years the sub classes of T cells that are Regulatory in nature (Treg) have been implicated in immune diseases where they were shown to suppress T cell functions. Additionally Th17 cells secreting IL-17A, IL17F, were implicated in immune inflammation. Taken together these regulatory cells may play a part in influencing immune responses in leprosy.


Assuntos
Hanseníase/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anergia Clonal/imunologia , Citocinas/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular , Hanseníase/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Mycobacterium leprae/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
18.
Mol Immunol ; 83: 72-81, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110210

RESUMO

Leprosy is a bacterial disease caused by M. leprae. Its clinical spectrum reflects the host's immune response to the M. leprae and provide an ideal model to investigate the host pathogen interaction and immunological dysregulation. Tregs are high in leprosy patients and responsible for immune suppression of the host by producing IL-10 and TGF-ß cytokines. In leprosy, plasticity of Tregs remain unstudied. This is the first study describing the conversion of Tregs into Th1-like and Th17-like cells using in vitro cytokine therapy in leprosy patients. Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA), rIL-12 and rIL-23 for 48h. Expression of FoxP3 in CD4+CD25+ Tregs, intracellular cytokines IFN-γ, TGF-ß, IL-10 and IL-17 in Tregs cells were evaluated by flow cytometry (FACS) after stimulation. rIL-12 treatment increases the levels of pStat4 in Tregs and IFN-γ production. In the presence of rIL-23, pStat3+ and IL-17A+ cells increase. rIL-12 and r-IL-23 treatment downregulated the FoxP3 expression, IL-10 and TGF-ß production by Tregs and enhances the expression of co-stimulatory molecules (CD80, CD86). In conclusion rIL-12 converts Tregs into IFN-γ producing cells through STAT-4 signaling while rIL-23 converts Tregs into IL-17 producing cells through STAT-3 signaling in leprosy patients. This study may helpful to provide a new avenue to overcome the immunosuprression in leprosy patients using in vitro cytokine.


Assuntos
Diferenciação Celular/imunologia , Interleucina-12/imunologia , Interleucina-23/imunologia , Hanseníase/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Western Blotting , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Cytokine ; 91: 82-88, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28038394

RESUMO

BACKGROUND: The clinical forms of leprosy consist of a spectrum that reflects the host's immune response to the M. leprae; it provides an ideal model to study the host pathogen interaction and immunological dysregulation in humans. IL-10 and TGF-ß producing Tregs are high in leprosy patients and responsible for immune suppression and M. leprae specific T cells anergy. In leprosy, involvement of IL-35 producing Tregs and Bregs remain unstudied. OBJECTIVE: To study the role of IL-35 producing Tregs and Bregs in the human leprosy. METHODS: Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA) for 48h. Intracellular cytokine IL-35 was evaluated in CD4+CD25+ Tregs, CD19+ cells by FACS. Expression of PD-1 on CD4+CD25+ Tregs, CD19+ cells and its ligand (PD-L1) on B cells, CD11c cells were evaluated by flow cytometry (FACS). Serum IL-35 level was estimated by ELISA. RESULTS: The frequency of IL-35 producing Tregs and Bregs cells were found to be high in leprosy patients (p<0.0001) as compared to healthy controls. These cells produced suppressive cytokine IL-35 which showed positive correlation with bacteriological index (BI) and TGF-ß producing Tregs, indicating its suppressive nature. We found higher expression of PD-1 on Tregs, B cell and its ligand (PD-L1) on antigen presenting cells in leprosy patients. CONCLUSION: This study point out a shift in our understanding of the immunological features that mediate and regulate the immune suppression and the disease progression in leprosy patients with a new paradigm (IL-35 producing Tregs and Bregs) that is beyond TGF-ß and IL-10 producing Treg cells.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos B Reguladores/imunologia , Interleucinas/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Feminino , Humanos , Interleucinas/sangue , Hanseníase/sangue , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia
20.
PLoS Negl Trop Dis ; 10(4): e0004592, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035913

RESUMO

BACKGROUND: 50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions. METHODOLOGY AND PRINCIPLE FINDINGS: Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-ß and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients. CONCLUSIONS: Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-ß and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation.


Assuntos
Interleucina-6/metabolismo , Hanseníase/patologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Adulto , Animais , Biópsia , Sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA