Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39464641

RESUMO

Our knowledge of galaxy formation and evolution has incredibly progressed through multi-wavelength observational constraints of the interstellar medium (ISM) of galaxies at all cosmic epochs. However, little is known about the physical properties of the more diffuse and lower surface brightness reservoir of gas and dust that extends beyond ISM scales and fills dark matter haloes of galaxies up to their virial radii, the circumgalactic medium (CGM). New theoretical studies increasingly stress the relevance of the latter for understanding the feedback and feeding mechanisms that shape galaxies across cosmic times, whose cumulative effects leave clear imprints into the CGM. Recent studies are showing that a - so far unconstrained - fraction of the CGM mass may reside in the cold ( T < 10 4 K) molecular and atomic phase, especially in high-redshift dense environments. These gas phases, together with the warmer ionised phase, can be studied in galaxies from z ∼ 0 to z ∼ 10 through bright far-infrared and sub-millimeter emission lines such as [C ii] 158 µm, [O iii] 88 µm, [C I] 609 µm, [C i] 370 µm, and the rotational transitions of CO. Imaging such hidden cold CGM can lead to a breakthrough in galaxy evolution studies but requires a new facility with the specifications of the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST). In this paper, we use theoretical and empirical arguments to motivate future ambitious CGM observations with AtLAST and describe the technical requirements needed for the telescope and its instrumentation to perform such science.


The paper aims to demonstrate the need for a new large aperture (50 m), single-antenna telescope receiving sub-millimeter and millimeter (hereafter sub-mm) 1 wave-length light from a high elevation site in the Atacama desert in Chile, named the Atacama Large Aperture Sub-millimeter Telescope (AtLAST). Here, we particularly focus on the science case of the so-called circumgalactic medium (CGM). This gaseous component exists beyond the scale of the matter that lies between stars in a galaxy (the interstellar medium, ISM) but still within the gravitationally bounded region of a galaxy. Our understanding of galaxies has so far been based on observations that focus on the ISM, but theory shows that observing the CGM may help us solve crucial open questions in the field of galaxy formation and evolution. Indeed, the properties of the CGM carry the vital imprints of the physical mechanisms that shape galaxies, specifically the powerful winds driven by newly formed stars and by supermassive black holes, and the incoming gas flows from the large-scale structure of the Universe that provide galaxies with their fuel to form stars. Despite its crucial role, little is known about the CGM, particularly its cold and dense gas content, because none of the current sub-mm telescopes enables such observations. We illustrate that exploring the hidden cold CGM components is an urgent task in the coming decades and evaluate how feasible this science case is, based on our current knowledge. We suggest a set of telescope parameters and instrumentation for AtLAST to achieve such key science goals of probing the cold CGM. Finally, we discuss expected synergies with current and future telescopes.

2.
Open Res Eur ; 4: 122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39403450

RESUMO

During the most active period of star formation in galaxies, which occurs in the redshift range 1 < z < 3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high- z galaxy population, we need to survey a large patch of the sky in the sub-mm with sufficient angular resolution to resolve all galaxies, but we also need the depth to fully sample their cosmic evolution, and therefore obtain their redshifts using direct mm spectroscopy with a very wide frequency coverage. This requires a large single-dish sub-mm telescope with fast mapping speeds at high sensitivity and angular resolution, a large bandwidth with good spectral resolution and multiplex spectroscopic capabilities. The proposed 50-m Atacama Large Aperture Submillimeter Telescope (AtLAST) will deliver these specifications. We discuss how AtLAST allows us to study the whole population of high-z galaxies, including the dusty star-forming ones which can only be detected and studied in the sub-mm, and obtain a wealth of information for each of these up to z ∼ 7: gas content, cooling budget, star formation rate, dust mass, and dust temperature. We present worked examples of surveys that AtLAST can perform, both deep and wide, and also focused on galaxies in proto-clusters. In addition we show how such surveys with AtLAST can measure the growth rate f σ 8 and the Hubble constant with high accuracy, and demonstrate the power of the line-intensity mapping method in the mm/sub-mm wavebands to constrain the cosmic expansion history at high redshifts, as good examples of what can uniquely be done by AtLAST in this research field.


Galaxies come in a wide variety of shapes, sizes, and colours, despite all of them having originated from similar initial conditions in the early Universe. Understanding this diversity by tracing back the evolutionary pathways of different types of galaxies is a major endeavour in modern astrophysics. Galaxies build their stellar mass over time by converting gas into stars through various episodes of star formation. Understanding exactly when, where, and how this star formation process is triggered or suppressed is therefore a crucial question to answer. Current observations reveal that the Universe was at its most active (in terms of star formation rate per unit volume) in the distant past, about 10 billion years ago. By measuring the amount of gas and dust in galaxies at that epoch, we also know that the reason for this very high star formation activity is large reservoirs of gas (the fuel for star formation) and the higher efficiency of galaxies at converting their gas into stars. However, recent work also reveals that we are missing significant numbers of distant actively star-forming galaxies in current samples because these are obscured by dust, and therefore our picture is still very incomplete. In this paper, we explore how a new proposed telescope, the Atacama Large Aperture Submillimeter Telescope (AtLAST: http://atlast-telescope.org), can provide us with the very important missing pieces of this puzzle. AtLAST will allow us to map large areas of the sky at unprecedented depth, resolution and multiplex spectroscopic capabilities. This telecope would provide us with a complete, homogeneous and unbiased picture of the star-forming galaxy population in the early Universe. Not only will we be able to discover these galaxies, but also measure their distances, the composition of their gas and dust content, and the rate at which they convert gas into stars.

3.
Open Res Eur ; 4: 112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386150

RESUMO

As we learn more about the multi-scale interstellar medium (ISM) of our Galaxy, we develop a greater understanding for the complex relationships between the large-scale diffuse gas and dust in Giant Molecular Clouds (GMCs), how it moves, how it is affected by the nearby massive stars, and which portions of those GMCs eventually collapse into star forming regions. The complex interactions of those gas, dust and stellar populations form what has come to be known as the ecology of our Galaxy. Because we are deeply embedded in the plane of our Galaxy, it takes up a significant fraction of the sky, with complex dust lanes scattered throughout the optically recognizable bands of the Milky Way. These bands become bright at (sub-)millimetre wavelengths, where we can study dust thermal emission and the chemical and kinematic signatures of the gas. To properly study such large-scale environments, requires deep, large area surveys that are not possible with current facilities. Moreover, where stars form, so too do planetary systems, growing from the dust and gas in circumstellar discs, to planets and planetesimal belts. Understanding the evolution of these belts requires deep imaging capable of studying belts around young stellar objects to Kuiper belt analogues around the nearest stars. Here we present a plan for observing the Galactic Plane and circumstellar environments to quantify the physical structure, the magnetic fields, the dynamics, chemistry, star formation, and planetary system evolution of the galaxy in which we live with AtLAST; a concept for a new, 50m single-dish sub-mm telescope with a large field of view which is the only type of facility that will allow us to observe our Galaxy deeply and widely enough to make a leap forward in our understanding of our local ecology.


There are many individual components contributing to the overall evolution of our Galaxy, the Milky Way. Through understanding the physics and chemistry of the Galaxy around us, we better understand our origins, our environment, and where we're going. Here we outline a number of observational surveys of our Galaxy that would produce a step change in our understanding of the evolution of the Galaxy around us, both as a template for others, and as the only way of understanding our place in the larger Universe. We present surveys of the Galactic Plane focusing on the dust and magnetic fields, chemistry, and dynamics of the gas. We then suggest surveys of local stars and star forming regions to uncover the origins of stars, planets and how those planetary systems evolve over the course of their lives, helping to put our Sun and Solar System in context. These types of observations require simultaneously sensitive, long wavelength (between 0.3 and 3 millimetre) observations as well as a large coverage of the sky, and cannot be done with current observatories operating at these wavelengths. Future leaps in understanding these systems will require a new telescope; a large telescope at a good observing location with a large field of view. This telescope, the Atacama Large Sub-mm Telescope (AtLAST; http://atlast-telescope.org/) is being developed, and here we are presenting the science cases for this new telescope from the point of view of our Galaxy. Together, these studies will revolutionise our understanding of the history and evolution of our Galaxy and bring us yet another step closer to understanding our place in, and the evolution of, our Universe.

4.
Open Res Eur ; 4: 78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100074

RESUMO

The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution of the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets provide insights into the past and present-day habitability of planetary environments, and the availability of the chemical ingredients for life. While prior and existing (sub)millimeter observations have led to major advances in these areas, progress is hindered by limitations in the dynamic range, spatial and temporal coverage, as well as sensitivity of existing telescopes and interferometers. Here, we summarize some of the key planetary science use cases that factor into the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m class single dish facility: (1) to more fully characterize planetary wind fields and atmospheric thermal structures, (2) to measure the compositions of icy moon atmospheres and plumes, (3) to obtain detections of new, astrobiologically relevant gases and perform isotopic surveys of comets, and (4) to perform synergistic, temporally-resolved measurements in support of dedicated interplanetary space missions. The improved spatial coverage (several arcminutes), resolution (~ 1.2'' - 12''), bandwidth (several tens of GHz), dynamic range (~ 10 5) and sensitivity (~ 1 mK km s -1) required by these science cases would enable new insights into the chemistry and physics of planetary environments, the origins of prebiotic molecules and the habitability of planetary systems in general.


Our present understanding of what planets and comets are made of, and how their atmospheres move and change, has been greatly influenced by observations using existing and prior telescopes operating at wavelengths in the millimeter/submillimeter range (between the radio and infrared parts of the electromagnetic spectrum), yet major gaps exist in our knowledge of these diverse phenomena. Here, we describe the need for a new telescope capable of simultaneously observing features on very large and very small scales, and covering a very large spread of intrinsic brightness, in planets and comets. Such a telescope is required for mapping storms on giant planets, measuring the compositions of the atmospheres and plumes of icy moons, detecting new molecules in comets and planetary atmospheres, and to act as a complement for measurements by current and future interplanetary spacecraft missions. We discuss the limitations of currently-available millimeter/submillimeter telescopes, and summarize the requirements and applications of a new and larger, more sensitive facility operating at these wavelengths: the Atacama Large Aperture Submillimeter Telescope (AtLAST).

5.
Open Res Eur ; 4: 140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139813

RESUMO

Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.


Observations of our Sun and other stars at wavelengths of around one millimeter, i.e. in the range between infrared and radio waves, present a valuable complementary perspective. Despite significant technological advancements, certain critical aspects necessitate diagnostic capabilities not offered by current observatories. The proposed Atacama Large Aperture Submillimeter Telescope (AtLAST), featuring a 50-meter aperture and slated for construction at a high altitude in Chile's Atacama desert, promises to address these observational needs. Equipped with novel detectors that would cover a wide frequency range, AtLAST could unlock a plethora of scientific studies contributing to a better understanding of our host star. Simultaneous observations over a broad frequency range at rapid succession would enable the imaging of different layers of the Sun, thus elucidating the three-dimensional thermal and magnetic structure of the solar atmosphere and providing important clues for many long-standing central questions such as how the outermost layers of the Sun are heated to very high temperatures, the nature of large-scale structures like prominences, and how flares and coronal mass ejections, i.e. enormous eruptions, are produced. The latter is of particular interest to modern society due to the potentially devastating impact on the technological infrastructure we depend on today. Another unique possibility would be to study the Sun's long-term evolution in this wavelength range, which would yield important insights into its activity cycle. Moreover, the Sun serves as a fundamental reference for other stars as, due to its proximity, it is the only star that can be investigated in such detail. The results for the Sun would therefore have direct implications for understanding other stars and their impact on exoplanets. This article outlines the key scientific objectives and technical requirements for solar observations with AtLAST.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA