Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638909

RESUMO

Hepatitis B virus (HBV) chronically infects more than 240 million people worldwide, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Genome editing using CRISPR/Cas9 could provide new therapies because it can directly disrupt HBV genomes. However, because HBV genome sequences are highly diverse, the identical target sequence of guide RNA (gRNA), 20 nucleotides in length, is not necessarily present intact in the target HBV DNA in heterogeneous patients. Consequently, possible genome-editing drugs would be effective only for limited numbers of patients. Here, we show that an adenovirus vector (AdV) bearing eight multiplex gRNA expression units could be constructed in one step and amplified to a level sufficient for in vivo study with lack of deletion. Using this AdV, HBV X gene integrated in HepG2 cell chromosome derived from a heterogeneous patient was cleaved at multiple sites and disrupted. Indeed, four targets out of eight could not be cleaved due to sequence mismatches, but the remaining four targets were cleaved, producing irreversible deletions. Accordingly, the diverse X gene was disrupted at more than 90% efficiency. AdV containing eight multiplex gRNA units not only offers multiple knockouts of genes, but could also solve the problems of heterogeneous targets and escape mutants in genome-editing therapy.


Assuntos
Adenoviridae/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Vírus da Hepatite B/genética , RNA Guia de Cinetoplastídeos/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Adenoviridae/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Vetores Genéticos/genética , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/genética , Hepatite B Crônica/terapia , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , RNA Guia de Cinetoplastídeos/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/genética
2.
Virus Res ; 306: 198565, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555437

RESUMO

Hepatitis B virus (HBV) is the causative agent of chronic liver disease and is correlated with the development of subsequent hepatic cirrhosis and hepatocellular carcinoma. Current antiviral therapy using nucleos(t)ide analogs is effective in suppressing viral replication and interrupting disease progression, but HBV is rarely cured completely. Thus, there remains an unmet need for the development of novel anti-HBV drugs. Here, we report the identification of N-(4-Nitrophenyl)-1-phenylethanone hydrazone (ANPH) as a novel structural class of selective inhibitors targeting the replication of the HBV genome using adenovirus vector-mediated HBV genome transduction. ANPH inhibited viral genome replication in HepG2.2.15 cells by inducing the formation of empty capsids devoid of pregenomic RNA without affecting its transcription and translation. Biochemical assays using a truncated core protein consisting of the assembly domain showed that ANPH accelerates the formation of morphologically intact capsids. Taken together, we propose that ANPH might provide a new structural scaffold to design a new anti-HBV drug in medicinal chemistry as well as chemical probes for HBV core protein functions in the future.


Assuntos
Hepatite B , Neoplasias Hepáticas , Acetofenonas , Antivirais/uso terapêutico , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírus da Hepatite B , Humanos , Montagem de Vírus , Replicação Viral
3.
Sci Rep ; 11(1): 3961, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597562

RESUMO

Simultaneous expression of multiplex guide RNAs (gRNAs) is valuable for knockout of multiple genes and also for effective disruption of a gene by introducing multiple deletions. We developed a method of Tetraplex-guide Tandem for construction of cosmids containing four and eight multiplex gRNA-expressing units in one step utilizing lambda in vitro packaging. Using this method, we produced an adenovirus vector (AdV) containing four multiplex-gRNA units for two double-nicking sets. Unexpectedly, the AdV could stably be amplified to the scale sufficient for animal experiments with no detectable lack of the multiplex units. When the AdV containing gRNAs targeting the H2-Aa gene and an AdV expressing Cas9 nickase were mixed and doubly infected to mouse embryonic fibroblast cells, deletions were observed in more than 80% of the target gene even using double-nicking strategy. Indels were also detected in about 20% of the target gene at two sites in newborn mouse liver cells by intravenous injection. Interestingly, when one double-nicking site was disrupted, the other was simultaneously disrupted, implying that two genes in the same cell may simultaneously be disrupted in the AdV system. The AdVs expressing four multiplex gRNAs could offer simultaneous knockout of four genes or two genes by double-nicking cleavages with low off-target effect.


Assuntos
Adenoviridae/genética , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/genética , Animais , Sistemas CRISPR-Cas , Cosmídeos , Fibroblastos/metabolismo , Edição de Genes/métodos , Vetores Genéticos/genética , Células HEK293 , Células Hep G2 , Humanos , Mutação INDEL/genética , Camundongos Endogâmicos C57BL , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
4.
J Gene Med ; 21(11): e3115, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348845

RESUMO

BACKGROUND: Genome editing using the CRISPR/Cas9 system is now well documented in basic studies and is expected to be applied to gene therapy. Simultaneous expression of multiplex guide RNA (gRNA) and Cas9/Cas9 derivative is attractive for the efficient knockout of genes and a safe double-nicking strategy. However, such use is limited because highly multiplex gRNA-expressing units are difficult to maintain stably in plasmids as a result of deletion via homologous recombination. METHODS: Lambda in vitro packaging was used instead of transformation for the construction and preparation of large, cos-containing plasmid (cosmid). Polymerase chain reaction fragments containing multiplex gRNA units were obtained using the Four-guide Tandem method. Transfection was performed by lipofection. RESULTS: We constructed novel cosmids consisting of linearized plasmid-DNA fragments containing up to 16 copies of multiplex gRNA-expressing units as trimer or tetramer (polygonal cosmids). These cosmids behaved as if they were monomer plasmids, and multiplex units could stably be maintained and amplified with a lack of deletion. Surprisingly, the deleted cosmid was removed out simply by amplifying the cosmid stock using lambda packaging. The DNA fragments containing multiplex gRNA-units and Cas9 were transfected to 293 cells and were found to disrupt the X gene of hepatitis B virus by deleting a large region between the predicted sites. CONCLUSIONS: We present a simple method for overcoming the problem of constructing plasmids stably containing multiplex gRNA-expressing units. The method may enable the production of very large amounts of DNA fragments expressing intact, highly-multiplex gRNAs and Cas9/Cas9 derivatives for safe and efficient genome-editing therapy using non-viral vectors.


Assuntos
Sistemas CRISPR-Cas , Cosmídeos/genética , Amplificação de Genes , Edição de Genes , Expressão Gênica , RNA Guia de Cinetoplastídeos , Bacteriófago lambda/genética , Ordem dos Genes , Marcação de Genes , Vírus da Hepatite B/genética , Humanos , Deleção de Sequência , Transfecção
5.
Nat Commun ; 10(1): 1567, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952864

RESUMO

Selective autophagy ensures the removal of specific soluble proteins, protein aggregates, damaged mitochondria, and invasive bacteria from cells. Defective autophagy has been directly linked to metabolic disorders. However how selective autophagy regulates metabolism remains largely uncharacterized. Here we show that a deficiency in selective autophagy is associated with suppression of lipid oxidation. Hepatic loss of Atg7 or Atg5 significantly impairs the production of ketone bodies upon fasting, due to decreased expression of enzymes involved in ß-oxidation following suppression of transactivation by PPARα. Mechanistically, nuclear receptor co-repressor 1 (NCoR1), which interacts with PPARα to suppress its transactivation, binds to the autophagosomal GABARAP family proteins and is degraded by autophagy. Consequently, loss of autophagy causes accumulation of NCoR1, suppressing PPARα activity and resulting in impaired lipid oxidation. These results suggest that autophagy contributes to PPARα activation upon fasting by promoting degradation of NCoR1 and thus regulates ß-oxidation and ketone bodies production.


Assuntos
Autofagia , Metabolismo dos Lipídeos , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/fisiologia , Jejum , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Camundongos , Correpressor 1 de Receptor Nuclear/fisiologia , Oxirredução , PPAR alfa
6.
Microbiol Immunol ; 61(7): 264-271, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28543309

RESUMO

Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 109 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed.


Assuntos
Adenoviridae/genética , Enfisema/terapia , Fator 7 de Crescimento de Fibroblastos/biossíntese , Fator 7 de Crescimento de Fibroblastos/genética , Adenoviridae/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Animais , Bleomicina/farmacologia , DNA Viral/genética , Modelos Animais de Doenças , Enfisema/induzido quimicamente , Enfisema/fisiopatologia , Fator 7 de Crescimento de Fibroblastos/administração & dosagem , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Elastase Pancreática , Regiões Promotoras Genéticas , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/virologia , Proteína D Associada a Surfactante Pulmonar/metabolismo
7.
Sci Rep ; 7: 41851, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28157182

RESUMO

The complicated replication mechanisms of hepatitis B virus (HBV) have impeded HBV studies and anti-HBV therapy development as well. Herein we report efficient genome replication of HBV applying adenovirus vectors (AdVs) showing high transduction efficiency. Even in primary hepatocytes derived from humanized mice the transduction efficiencies using AdVs were 450-fold higher compared than those using plasmids. By using an expression unit consisting of the CMV promoter, 1.03-copy HBV genome and foreign poly(A) signal, we successfully generated an improved AdV (HBV103-AdV) that efficiently provided 58 times more pregenomic RNA than previously reported AdVs. The HBV103-AdV-mediated HBV replication was easily and precisely detected using quantitative real-time PCR in primary hepatocytes as well as in HepG2 cells. Notably, when the AdV containing replication-defective HBV genome of 1.14 copy was transduced, we observed that HBV DNA-containing circular molecules (pseudo-ccc DNA) were produced, which were probably generated through homologous recombination. However, the replication-defective HBV103-AdV hardly yielded the pseudo-ccc, probably because the repeated sequences are vey short. Additionally, the efficacies of entecavir and lamivudine were quantitatively evaluated using this system at only 4 days postinfection with HBV103-AdVs. Therefore, this system offers high production of HBV genome replication and thus could become used widely.


Assuntos
Vírus da Hepatite B/metabolismo , Transfecção/métodos , Replicação Viral , Adenoviridae/genética , Citomegalovirus/genética , Vetores Genéticos/genética , Genoma Viral , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
8.
Exp Anim ; 65(3): 231-44, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923756

RESUMO

Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.


Assuntos
Técnicas Genéticas , Integrases/genética , Camundongos Transgênicos/genética , Recombinação Genética , Tamoxifeno , Transgenes , Animais , Antígenos Transformantes de Poliomavirus/genética , Fusão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Oncogenes/genética , Fenótipo , Ativação Transcricional
9.
J Gen Virol ; 97(4): 887-892, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26861864

RESUMO

Hepatitis C virus (HCV) core plays a key role in viral particle formation and is involved in viral pathogenesis. Here, constructs for single-domain intrabodies consisting of variable regions derived from mouse mAbs against HCV core were established. Expressed single-domain intrabodies were shown to bind to HCV core, and inhibit the growth of cell culture-produced HCV derived from JFH-1 (genotype 2a) and a TH (genotype 1b)/JFH-1 chimera. Adenovirus vectors expressing intrabodies were also capable of reducing HCV propagation. Intrabody expression did not affect viral entry or genome replication of single-round infectious trans-complemented HCV particles. However, intrabody expression reduced intracellular and extracellular infectious titres in CD81-defective Huh7-25 cells transfected with the HCV genome, suggesting that these intrabodies impair HCV assembly. Furthermore, intrabody expression suppressed HCV core-induced NFκB promoter activity. These intrabodies may therefore serve as tools for elucidating the role of core in HCV pathogenesis.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Hepacivirus/genética , Hepatócitos/imunologia , Anticorpos de Domínio Único/imunologia , Proteínas do Core Viral/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Linhagem Celular Tumoral , Mapeamento de Epitopos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Hepacivirus/imunologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Hibridomas/imunologia , Imunização , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , Plasmídeos/química , Plasmídeos/imunologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/biossíntese , Transfecção , Proteínas do Core Viral/imunologia , Montagem de Vírus/genética
10.
PLoS Pathog ; 10(12): e1004534, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25502789

RESUMO

Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.


Assuntos
Apolipoproteínas B/química , Apolipoproteínas B/fisiologia , Apolipoproteínas E/química , Apolipoproteínas E/fisiologia , Hepacivirus/patogenicidade , Estrutura Secundária de Proteína/fisiologia , Vírion/patogenicidade , Apolipoproteínas A/fisiologia , Apolipoproteínas B/genética , Apolipoproteínas C/fisiologia , Apolipoproteínas E/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Hepacivirus/fisiologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , RNA Interferente Pequeno/farmacologia , Vírion/fisiologia , Replicação Viral/fisiologia
11.
PLoS One ; 9(9): e108627, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275311

RESUMO

Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs), are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR) activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs) and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF) significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.


Assuntos
Adenoviridae/fisiologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , RNA Viral/metabolismo , Replicação Viral , Adenoviridae/crescimento & desenvolvimento , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Antígeno-1 Intracelular de Células T , Regulação para Cima
12.
EMBO Rep ; 15(5): 557-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24668264

RESUMO

Several autophagy proteins contain an LC3-interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B-positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP-ALFY-LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR-binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Linhagem Celular Tumoral , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/ultraestrutura
13.
Sci Rep ; 3: 3575, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24356586

RESUMO

First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Hepacivirus/genética , Hepatite C Crônica/terapia , Replicação Viral/genética , Proteínas E1 de Adenovirus/genética , Proteínas E3 de Adenovirus/genética , Proteínas E4 de Adenovirus/genética , Linhagem Celular , Terapia Genética , Células HEK293 , Hepacivirus/crescimento & desenvolvimento , Hepatite C Crônica/genética , Humanos , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , RNA Viral/biossíntese , Integração Viral/genética
14.
Sci Rep ; 3: 1136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23355950

RESUMO

First-generation adenovirus vectors (FG AdVs) are widely used in basic studies and gene therapy. However, virus-associated (VA) RNAs that act as small-interference RNAs are indeed transcribed from the vector genome. These VA RNAs can trigger the innate immune response. Moreover, VA RNAs are processed to functional viral miRNAs and disturb the expressions of numerous cellular genes. Therefore, VA-deleted AdVs lacking VA RNA genes would be advantageous for basic studies, both in vitro and in vivo. Here, we describe an efficient method of producing VA-deleted AdVs. First, a VA RNA-substituted "pre-vector" lacking the original VA RNA genes but alternatively possessing an intact VA RNA region flanked by a pair of FRTs was constructed. VA-deleted AdVs were efficiently obtained by infecting 293hde12 cells, which highly express FLP, with the pre-vector. The resulting transduction titers of VA-deleted AdVs were sufficient for practical use. Therefore, VA-deleted AdVs may be substitute for current FG AdV.


Assuntos
Adenoviridae/genética , Vetores Genéticos/metabolismo , Interferência de RNA , RNA Viral/metabolismo , Sequência de Bases , Linhagem Celular , Vetores Genéticos/genética , Células HEK293 , Células HeLa , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular
15.
Uirusu ; 63(2): 155-64, 2013.
Artigo em Japonês | MEDLINE | ID: mdl-25366050

RESUMO

First-generation adenovirus vectors (FG-AdVs) are widely used because transduction efficiency of the vectors is very high. However, severe immune responses especially to the liver have been a serious problem of this vector. We succeeded to identify a viral protein that cause the immune responses and reported ''low-inflammatory AdVs'' that mostly solve this problem. However, to develop the ultimate form of this vector, it is necessary to remove virus-associated RNA (VA RNA) genes from the AdV vector genome. VA RNAs are transcribed by polymerase III; they are not essential for viral growth but have important roles to make appropriate circumstances for this virus. Large amount of VA RNAs are required in the late phase to support viral growth. Hence it is difficult to establish 293 cell lines that can support replication of AdVs lacking VA RNA genes (VA-deleted AdVs) supplying sufficient amount of VA RNA in trans. Recently we have developed a method for efficient production of VA-deleted AdVs and succeeded to obtain a high titer of VA-deleted AdVs. Then we construct VA-deleted AdVs expressing shRNA that knockdown the replication of hepatitis C virus (HCV). In fact, VA-deleted AdVs expressing these shRNAs suppressed HCV replication more effectively than conventional FG-AdV. Therefore, we showed that VA RNAs expressed from FG-AdVs probably compete with shRNA in the maturation pathway and reduce the effect of shRNAs. We think that VA-deleted AdV may substitute for current FG-AdVs and become a standard AdV.


Assuntos
Adenoviridae/genética , Vetores Genéticos , Adenoviridae/imunologia , Adenoviridae/fisiologia , Células Cultivadas , Vetores Genéticos/imunologia , Hepacivirus/fisiologia , Humanos , RNA Polimerase III/fisiologia , RNA Interferente Pequeno , RNA Viral/genética , RNA Viral/fisiologia , Transcrição Gênica , Replicação Viral/genética
16.
Virology ; 432(1): 29-38, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22727832

RESUMO

In this study, we compared the entry processes of trans-complemented hepatitis C virus particles (HCVtcp), cell culture-produced HCV (HCVcc) and HCV pseudoparticles (HCVpp). Anti-CD81 antibody reduced the entry of HCVtcp and HCVcc to almost background levels, and that of HCVpp by approximately 50%. Apolipoprotein E-dependent infection was observed with HCVtcp and HCVcc, but not with HCVpp, suggesting that the HCVtcp system is more relevant as a model of HCV infection than HCVpp. We improved the productivity of HCVtcp by introducing adapted mutations and by deleting sequences not required for replication from the subgenomic replicon construct. Furthermore, blind passage of the HCVtcp in packaging cells resulted in a novel mutation in the NS3 region, N1586D, which contributed to assembly of infectious virus. These results demonstrate that our plasmid-based system for efficient production of HCVtcp is beneficial for studying HCV life cycles, particularly in viral assembly and infection.


Assuntos
Hepacivirus/patogenicidade , Virologia/métodos , Montagem de Vírus , Internalização do Vírus , Teste de Complementação Genética , Hepacivirus/fisiologia , Humanos , Cultura de Vírus/métodos
17.
Microbiol Immunol ; 56(7): 447-55, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22734445

RESUMO

First-generation AdV enables efficient gene transduction, although its immunogenicity is an important problem in vivo. Helper-dependent AdV (HD-AdV) is one possible solution to this problem. The construction of HD-AdV requires a helper virus, in which the viral packaging domain is flanked by two inserted loxP to hamper its packaging in Cre-expressing 293 cells. Here, we constructed 19L viruses containing loxP at 191 nt from the left end of the genome upstream of the packaging domain, 15L viruses bearing loxP at 143 nt, and a control ΔL virus lacking loxP at these positions. The 19L position is used worldwide, and the 15L position has been reported to result in a lower titer than that of 19L. When the titers were compared for six pairs of 19L and 15L AdV, the 19L AdV produced titers similar to, or sometimes lower than, the 15L and ΔL AdV, unlike the results of previous reports. We next chose one pair of 15L and 19L AdV that produced titers similar to that of ΔL and a competitor AdV lacking loxP for use in a competition assay. When a small amount of the competitor AdV was co-infected, both the 15L and the 19L AdV, but not ΔL, gradually became minority components during subsequent viral passages. Therefore, the loxP insertions at 143 nt and 191 nt decreased the viral packaging efficiency.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/genética , Vetores Genéticos/genética , Mutagênese Insercional , Montagem de Vírus , Adenoviridae/química , Adenoviridae/fisiologia , Sequência de Bases , Linhagem Celular , Vetores Genéticos/fisiologia , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Humanos , Dados de Sequência Molecular , Integração Viral
18.
Biochem Biophys Res Commun ; 417(3): 945-50, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22202173

RESUMO

Both transfection and adenovirus vectors are commonly used in studies measuring gene expression. However, the real DNA copy number that is actually transduced into target cells cannot be measured using quantitative PCR because attached DNA present on the cell surface is difficult to distinguish from successfully transduced DNA. Here, we used Cre/loxP system to show that most of the transfected DNA was in fact attached to the cell surface; in contrast, most of the viral vector DNA used to infect the target cells was present inside the cells after the cells were washed according to the conventional infection protocol. We applied this characteristic to adenoviral vector titration. Current methods of vector titration using the growth of 293 cells are influenced by the effect of the expressed gene product as well as the cell conditions and culture techniques. The titration method proposed here indicates the copy numbers introduced to the target cells using a control vector that is infected in parallel (relative vector titer: rVT). Moreover, the new titration method is simple and reliable and may replace the current titration methods of viral vectors.


Assuntos
Adenoviridae/genética , DNA Viral/análise , Vetores Genéticos/análise , Genoma Viral , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , Membrana Celular/virologia , DNA Viral/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Transdução Genética
19.
Virus Res ; 160(1-2): 89-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21645560

RESUMO

We previously established inducible-hepatitis C virus (HCV) transgenic mice, which expressed the HCV gene (nucleotides 294-3435) encoding the core, E1, E2, and NS2 proteins. The expression of these proteins is regulated by the Cre/loxP system and an adenovirus vector (AdV) that expresses Cre DNA recombinase (Cre) controlled by the CAG promoter (AxCANCre). Recent studies have demonstrated that AxCANCre injection alone results in severe liver injury by induction of the adenovirus protein IX (Ad-pIX) gene. As a result, HCV protein expression in transgenic mice livers was only short-term. In contrast, the EF1α promoter-bearing AdV induces slight Ad-pIX gene expression without inducing severe liver injury. Therefore, in the present study, we developed a Cre-expressing AdV that bears the EF1α promoter (AxEFCre) to express HCV protein in the transgenic mouse livers. In the non-transgenic mice injected with AxCANCre, alanine aminotransferase (ALT) levels were elevated and severe liver inflammation occurred; this was not observed in AxEFCre-injected mice. In contrast, AxEFCre-injected HCV transgenic mice showed milder liver inflammatory responses that were clearly due to HCV protein expression. Moreover, the AxEFCre injection enabled the transgenic mice to persistently express HCV protein. These results indicate that use of AxEFCre efficiently promotes Cre-mediated DNA recombination in vivo without a severe hepatitis response to AdV. This inducible-HCV transgenic mouse model using AxEFCre should be useful for research on HCV pathogenesis.


Assuntos
Adenoviridae/genética , Expressão Gênica , Vetores Genéticos , Hepacivirus/genética , Integrases/metabolismo , Fígado/patologia , Animais , Modelos Animais de Doenças , Hepatite C/patologia , Hepatite C/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Genes Cells ; 16(7): 765-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21707874

RESUMO

Cre and FLP recombinases mediate not only specific deletions and insertions, but also the recombinase-mediated cassette exchange (RMCE) reaction, which is used in cell biotechnology including ES cells and mouse genetics. However, comparison of efficiencies for Cre and FLP in RMCE has not been made. We here examined the detailed process of RMCE with Cre and FLP in vitro using mutant loxP 2272 and three mutant FRTs (FRT G, FRT H, and FRT F3) and then quantitatively compared the RMCE reactions in vitro. Interestingly, in the in vitro reactions, the RMCE efficiency of Cre reached a plateau level of approximately 5% and did not proceed further, whereas that of FLPe reached approximately 12-13%, showing that FLPe reached a higher level of efficiency than Cre possibly when they were supplied at a very high concentration. Moreover, we quantitatively compared the production efficiency of E1-deleted adenovirus vector using the RMCE method with Cre or FLP. The results showed that FLPe was again found more efficient than Cre in RMCE reaction. Thus, although Cre is considered more active than, or similar to, FLPe, it may not be necessarily true for RMCE reaction. Possible reasons explaining these results are discussed.


Assuntos
Adenoviridae/genética , DNA Nucleotidiltransferases/metabolismo , Vetores Genéticos/biossíntese , Integrases/metabolismo , Recombinação Genética/genética , Adenoviridae/crescimento & desenvolvimento , Animais , Linhagem Celular , DNA Nucleotidiltransferases/genética , Vetores Genéticos/genética , Células HEK293 , Haplorrinos , Humanos , Integrases/genética , Mutagênese Insercional , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA