Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 26799-26809, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051032

RESUMO

Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20-65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load-unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics.

2.
Photochem Photobiol Sci ; 22(11): 2541-2552, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656334

RESUMO

Flexible and aromatic photofunctional system (FLAP) is composed of flapping rigid aromatic wings fused with a flexible 8π ring at the center such as cyclooctatetraene (COT). A series of FLAP have been actively studied for the interesting dynamic behaviors. Here, we synthesized a new flapping molecule bearing naphtho-perylenebisimide wings (NPBI-FLAP), in which two perylene units are arranged side by side. As a reference compound, we also prepared COT-fused NPBI (NPBI-COT) that contains only single perylene unit. In both compounds, inherent strong fluorescence of the NPBI moiety is almost quenched and the FL lifetime becomes much shortened in highly polar solvents (acetone and DMF). Through the analyses of environment-sensitive fluorescence, electrochemical reduction/oxidation, and femtosecond transient absorption, the fluorescence quenching behavior was attributed to rapid symmetry-breaking charge separation (SB-CS) for NPBI-FLAP and to intramolecular charge transfer (ICT) for NPBI-COT. Most of the excited species of these compounds decay with the bent geometry, which is in contrast with the excited-state planarization behavior of a previously reported COT-fused peryleneimides with the double-headed arrangement of the perylene moieties. These results indicate that changing the fusion manners between COT and other π skeletons offers new functional molecules with distinct dynamics.

3.
Photochem Photobiol Sci ; 22(2): 371-378, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36322378

RESUMO

Fluorescence probes are widely used to assess the molecular environment based on their photo-physical properties. Specifically, flexible and aromatic photo-functional system (FLAP) is unique viscosity probe owing to the excited-state planarization of anthracene wings. We have previously applied fluorescence spectroscopy to monitor the evaporative crystallization of solvents. The fluorescence color and spectral changes, which depend on the aggregation form, enable direct fluorescence visualization during evaporative crystallization. The fluorescence visualization of the liquid-like cluster intermediate proposed in the two-step nucleation model for the nucleation process has been achieved. However, the physical properties of these clusters, especially the viscosity, molecular motion, and intermolecular interactions, are still unclear. In this study, FLAPs are used as probes for local-viscosity changes and space limitations of the liquid-like cluster state during evaporative crystallization by observing the fluorescence-spectral changes and using hyperspectral-camera (HSC) imaging. Green emission originates from the monomer in the solution owing to the free-flapping motion. The fluorescence color turns blue with increasing viscosity under crowding conditions. If the survival time of the liquid-like cluster state is sufficient, crystalline phase (R-phase) formation proceeds via a 2-fold π-stacked array of the V-shaped molecules. It is difficult to form the V-shaped stacked columnar structures in the liquid-like cluster state region, resulting in the deposition of head-to-tail dimer structures, such as the yellow-emissive phase (Y-phase). In the case of the FLAP, the stacking intermediate does not form during solvent evaporation in the liquid-like cluster; rather, it is deposited in an amorphous form that exhibits blue emission (B-phase). These findings suggest that it is important to the maintenance of the survival time of the liquid-like cluster states to organize and rearrange the stacking forms. We have achieved the fluorescence probing of viscosity changes at local molecular motion with solvent depletion during solvent evaporation for the first time.

4.
ACS Nano ; 16(7): 11244-11250, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35730993

RESUMO

The design of magnetic topological states due to spin polarization in an extended π carbon system has great potential in spintronics application. Although magnetic zigzag edges in graphene nanoribbons (GNRs) have been investigated earlier, real-space observation and manipulation of spin polarization in a heteroatom substituted system remains challenging. Here, we investigate a zero-bias peak at a boron site embedded at the center of an armchair-type GNR on a AuSiX/Au(111) surface with a combination of low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations. After the tip-induced removal of a Si atom connected to two adjacent boron atoms, a clear Kondo resonance peak appeared and was further split by an applied magnetic field of 12 T. This magnetic state can be relayed along the longitudinal axis of the GNR by sequential removal of Si atoms.

5.
Chemistry ; 28(28): e202200286, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35333427

RESUMO

Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.

6.
J Am Chem Soc ; 144(6): 2804-2815, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35108003

RESUMO

Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Géis/química , Fenazinas/química , Poliuretanos/química , Ciclo-Octanos/síntese química , Fluorescência , Corantes Fluorescentes/síntese química , Conformação Molecular , Fenazinas/síntese química , Estresse Mecânico
7.
Nat Commun ; 13(1): 303, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027559

RESUMO

Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.

8.
Chem Commun (Camb) ; 58(13): 2128-2131, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35072199

RESUMO

Understanding the microviscosity of soft condensed matter is important to clarify the mechanisms of chemical, physical or biological events occurring at the nanoscale. Here, we report that flapping fluorophores (FLAP) can serve as microviscosity probes capable of detecting small changes. By the ratiometric fluorescence analysis, one of the FLAP probes detects a macroscopic viscosity change of a few cP, occurring at the thermal phase transition of a nematic liquid crystal. We discuss the impact of the chemical structure on the detection capability, and the orientation of the FLAP molecules in the ground and excited states. This work contributes to experimentally providing a molecular picture of liquid crystals, which are often viewed as a continuum.

9.
Angew Chem Int Ed Engl ; 61(3): e202114697, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34826204

RESUMO

On-surface chemical reaction has become a very powerful technique to synthesize nanostructures by linking small molecules in the bottom-up approach. Given the fact that most reactants are simultaneously activated at certain temperatures, a sequential reaction in a controlled way has remained challenging. Here, we present an on-surface synthesis of multi-block co-oligomers from trifluoromethyl (CF3 ) substituted porphyrin metal complexes. The oligomerization on Au(111) is demonstrated with a combination of bond-resolved scanning probe microscopy and density functional theory (DFT) calculations. Even after the first oligomerization of single monomer unit, the termini of the oligomer keep the CF3 group, which can be used as a reactant for further coupling in a sequential order. Consequently, copper, cobalt, and palladium complexes of bisanthracene-fused porphyrin oligomers were linked with each other in a designed order.

10.
J Am Chem Soc ; 143(35): 14306-14313, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448563

RESUMO

Single-molecule spectroscopy (SMS) of a dual fluorescent flapping molecular probe (N-FLAP) enabled real-time nanoscale monitoring of local free volume dynamics in polystyrenes. The SMS study was realized by structural improvement of a previously reported flapping molecule by nitrogen substitution, leading to increased brightness (22 times) of the probe. In a polystyrene thin film at the temperature of 5 K above the glass transition, the spectra of a single N-FLAP molecule undergo frequent jumps between short- and long-wavelength forms, the latter one indicating planarization of the molecule in the excited state. The observed spectral jumps were statistically analyzed to reveal the dynamics of the molecular environment. The analysis together with MD and QM/MM calculations show that the excited-state planarization of the flapping probe occurs only when sufficiently large polymer free volume of more than, at least, 280 Å3 is available close to the molecule, and that such free volume lasts for an average of 1.2 s.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Fenazinas/química , Poliestirenos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Imagem Individual de Molécula
11.
Phys Rev Lett ; 125(14): 146801, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064521

RESUMO

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.

12.
J Am Chem Soc ; 142(35): 14985-14992, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786754

RESUMO

The shape of the lowest singlet excited-state (S1) energy profile is of primary importance in photochemistry and related materials science areas. Here we demonstrate a new approach for controlling the shape of the S1 energy profile which relies on tuning the level of excited-state aromaticity (ESA). In a series of fluorescent π-expanded oxepins, the energy decrease accompanying the bent-to-planar conformational change in S1 becomes less pronounced with lower ESA levels. Stabilization energies following from ESA were quantitatively estimated to be 10-20 kcal/mol using photophysical data. Very fast planarization dynamics in S1 was revealed by time-resolved fluorescence spectroscopy. The time constants were estimated to be shorter than 1 ps, regardless of molecular size and level of ESA, indicating barrierless S1 planarization within the oxepin series.

13.
Angew Chem Int Ed Engl ; 59(38): 16430-16435, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32529765

RESUMO

Flapping fluorophores (FLAP) with a flexible 8π ring are rapidly gaining attention as a versatile photofunctional system. Here we report a highly photostable "flapping peryleneimide" with an unprecedented fluorogenic mechanism based on a bent-to-planar conformational change in the S1 excited state. The S1 planarization induces an electronic configurational switch, almost quenching the inherent fluorescence (FL) of the peryleneimide moieties. However, the FL quantum yield is remarkably improved with a prolonged lifetime upon a slight environmental change. This fluorogenic function is realized by sensitive π-conjugation design, as a more π-expanded analogue does not show the planarization dynamics. With strong visible-light absorption, the FL lifetime response synchronized with the flexible flapping motion is useful for the latest optical techniques such as FL lifetime imaging microscopy (FLIM).

14.
Angew Chem Int Ed Engl ; 59(24): 9228-9230, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383184

RESUMO

The simple anti-aufbau DFT approach for estimating singlet excited state aromaticity suggested in a recent Communication published in this journal is shown to produce incorrect results because it targets a linear combination of the singlet and triplet configurations involving the HOMO and LUMO rather than the first singlet excited state. If the S1 state of a molecule is dominated by the HOMO→LUMO excitation, a comparably simple but theoretically consistent and qualitatively correct approximation to the S1 wavefunction can be achieved by performing a small "two electrons in two orbitals" CASSCF(2,2) calculation which can be followed by the evaluation of magnetic aromaticity criteria such as NICS.

15.
Chem Asian J ; 14(16): 2869-2876, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31290274

RESUMO

The air-water interface, which is the boundary of two phases with a large difference in polarity, gives a distinct environment compared with bulk water or air. Since the interface provides a field for various biomolecules to work, it is important to understand the molecular behaviors at the interface. Here, polarity-independent flapping viscosity probes (FLAP) equipped with hydrophobic/hydrophilic substituents have been synthesized and studied at the air-water interface. In situ fluorescence (FL), which is related to the internal motion and orientation, of three different FLAPs were investigated at the interface, and the internal motion of the molecule was indicated to be suppressed at the interface. In addition, the molecular response was compared with that of conventional viscosity probes (molecular rotors), which indicates the different behaviors of FLAP probably due to the distinct molecular orientation as well as molecular motion.

16.
Inorg Chem ; 57(23): 14686-14691, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30376313

RESUMO

The designed synthesis of inorganic cyclic compounds is a significant topic because of their many potential applications. In this study, we used a building block approach to synthesize siloxane-based macrocycles that resemble zeolite apertures. We synthesized a regioselectively functionalized cubic octasiloxane having two adjacent corners modified with Si-O-C bonds via the reaction of octa(hydridosilsesquioxane) (H8Si8O12) with 2,2'-( o-phenylenedioxy)diethanol. Hydrolysis and condensation of the Si-O-C bonds yield the cyclic compounds consisting of three, four, and five cage siloxane units. These compounds have more rigid ring structures than conventional cyclic organosiloxanes. Such an approach will lead to the design of a new class of host materials and molecular channels for transport and separation.

17.
J Vis Exp ; (135)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29912189

RESUMO

We discuss in this article the experimental measurements of the molecules in liquid crystal (LC) phase using the time-resolved infrared (IR) vibrational spectroscopy and time-resolved electron diffraction. Liquid crystal phase is an important state of matter that exists between the solid and liquid phases and it is common in natural systems as well as in organic electronics. Liquid crystals are orientationally ordered but loosely packed, and therefore, the internal conformations and alignments of the molecular components of LCs can be modified by external stimuli. Although advanced time-resolved diffraction techniques have revealed picosecond-scale molecular dynamics of single crystals and polycrystals, direct observations of packing structures and ultrafast dynamics of soft materials have been hampered by blurry diffraction patterns. Here, we report time-resolved IR vibrational spectroscopy and electron diffractometry to acquire ultrafast snapshots of a columnar LC material bearing a photoactive core moiety. Differential-detection analyses of the combination of time-resolved IR vibrational spectroscopy and electron diffraction are powerful tools for characterizing structures and photoinduced dynamics of soft materials.


Assuntos
Cristais Líquidos/química , Simulação de Dinâmica Molecular/estatística & dados numéricos , Espectrofotometria Infravermelho/métodos , Vibração
18.
J Phys Chem Lett ; 9(10): 2685-2690, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29739190

RESUMO

Möbius aromatic molecules have attracted great attention as new functional materials because of their π-orbital cyclic conjugations lying along the twisted Möbius topology. To elucidate the electronic character of the lowest excited triplet (T1) state of a Möbius aromatic [28]hexaphyrin, we employed a time-resolved electron paramagnetic resonance (TREPR) method with applied magnetophotoselection measurements at 77 K. Analyses of the EPR parameters have revealed that the T1 state possesses intramolecular charge-transfer (CT) character together with local excitation character residing at one side in the Möbius strip ring. We have also demonstrated that the CT character between orthogonal unpaired orbitals triggers quick triplet deactivation by spin-orbit coupling. This deactivation can be an important barometer to represent the "antiaromaticity" because of a connection between the orthogonal CT character and instability by a weakened spin-spin exchange coupling in the T1 state.

19.
J Am Chem Soc ; 140(20): 6245-6248, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29747510

RESUMO

Mechanical control of the molecular energy landscape is an important issue in modern materials science. Mechanophores play a unique role in that the mechanical responses are induced against the activation barrier for intramolecular transformation with the aid of external forces. Here we report an unprecedented activation process of a flexible flapping mechanophore. Namely, thermal void collapse in a crystalline phase triggers mechanophore compression in a definite proportion. Unfavored conformational planarization of the flapping mechanophore is compulsorily induced by packing force, leading to a total energy gain in crystal packing. Fluorescence chromism indicates extended π conjugation resulting from the mechanophore compression, giving rise to an energy transfer from the unpressed to compressed conformers.

20.
Angew Chem Int Ed Engl ; 57(19): 5438-5443, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29516597

RESUMO

A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited-state dynamics in solution. While the anthracene dimer showed a fast V-shaped-to-planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA