Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Pancreatol ; 7(1): 21-27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524857

RESUMO

The "omics" revolution has transformed the biomedical research landscape by equipping scientists with the ability to interrogate complex biological phenomenon and disease processes at an unprecedented level. The volume of "big" data generated by the different omics studies such as genomics, transcriptomics, proteomics, and metabolomics has led to the concurrent development of computational tools to enable in silico analysis and aid data deconvolution. Considering the intensive resources and high costs required to generate and analyze big data, there has been centralized, collaborative efforts to make the data and analysis tools freely available as "Open Source," to benefit the wider research community. Pancreatology research studies have contributed to this "big data rush" and have additionally benefitted from utilizing the open source data as evidenced by the increasing number of new research findings and publications that stem from such data. In this review, we briefly introduce the evolution of open source omics data, data types, the "FAIR" guiding principles for data management and reuse, and centralized platforms that enable free and fair data accessibility, availability, and provide tools for omics data analysis. We illustrate, through the case study of our own experience in mining pancreatitis omics data, the power of repurposing open source data to answer translationally relevant questions in pancreas research.

2.
Am J Respir Crit Care Med ; 209(2): 206-218, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934691

RESUMO

Rationale: Unraveling immune-driven vascular pathology in pulmonary arterial hypertension (PAH) requires a comprehensive understanding of the immune cell landscape. Although patients with hereditary (H)PAH and bone morphogenetic protein receptor type 2 (BMPR2) mutations have more severe pulmonary vascular pathology, it is not known whether this is related to specific immune cell subsets. Objectives: This study aims to elucidate immune-driven vascular pathology by identifying immune cell subtypes linked to severity of pulmonary arterial lesions in PAH. Methods: We used cutting-edge multiplexed ion beam imaging by time of flight to compare pulmonary arteries (PAs) and adjacent tissue in PAH lungs (idiopathic [I]PAH and HPAH) with unused donor lungs, as controls. Measurements and Main Results: We quantified immune cells' proximity and abundance, focusing on those features linked to vascular pathology, and evaluated their impact on pulmonary arterial smooth muscle cells (SMCs) and endothelial cells. Distinct immune infiltration patterns emerged between PAH subtypes, with intramural involvement independently linked to PA occlusive changes. Notably, we identified monocyte-derived dendritic cells within PA subendothelial and adventitial regions, influencing vascular remodeling by promoting SMC proliferation and suppressing endothelial gene expression across PAH subtypes. In patients with HPAH, pronounced immune dysregulation encircled PA walls, characterized by heightened perivascular inflammation involving T cell immunoglobulin and mucin domain-3 (TIM-3)+ T cells. This correlated with an expanded DC subset expressing indoleamine 2,3-dioxygenase 1, TIM-3, and SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1, alongside increased neutrophils, SMCs, and alpha-smooth muscle actin (ACTA2)+ endothelial cells, reinforcing the heightened severity of pulmonary vascular lesions. Conclusions: This study presents the first architectural map of PAH lungs, connecting immune subsets not only with specific PA lesions but also with heightened severity in HPAH compared with IPAH. Our findings emphasize the therapeutic potential of targeting monocyte-derived dendritic cells, neutrophils, cellular interactions, and immune responses to alleviate severe vascular pathology in IPAH and HPAH.


Assuntos
Hidralazina/análogos & derivados , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Artéria Pulmonar , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proliferação de Células , Hidrazonas
3.
Sci Transl Med ; 15(687): eabn2110, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921036

RESUMO

Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.


Assuntos
Antineoplásicos , Pancreatite , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Asparaginase/efeitos adversos , Retinoides/efeitos adversos , Vitamina A/uso terapêutico , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Análise de Sistemas , Antineoplásicos/efeitos adversos
5.
Metabolomics ; 17(7): 64, 2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34175981

RESUMO

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is among the most common cancers in children. With improvements in combination chemotherapy regimens, the overall survival has increased to over 90%. However, the current challenge is to mitigate adverse events resulting from the complex therapy. Several chemotherapies intercept cancer metabolism, but little is known about their collective role in altering host metabolism. OBJECTIVES: We profiled the metabolomic changes in plasma of ALL patients initial- and post- induction therapy. METHODS: We exploited a biorepository of non-fasted plasma samples derived from the Dana Farber Cancer Institute ALL Consortium; these samples were obtained from 50 ALL patients initial- and post-induction therapy. Plasma metabolites and complex lipids were analyzed by high resolution tandem mass spectrometry and differential mobility tandem mass spectrometry. Data were analyzed using a covariate-adjusted regression model with multiplicity adjustment. Pathway enrichment analysis and co-expression network analysis were performed to identify unique clusters of molecules. RESULTS: More than 1200 metabolites and complex lipids were identified in the total of global metabolomics and lipidomics platforms. Over 20% of those molecules were significantly altered. In the pathway enrichment analysis, lipids, particularly phosphatidylethanolamines (PEs), were identified. Network analysis indicated that the bioactive fatty acids, docosahexaenoic acid (DHA)-containing (22:6) triacylglycerols (TAGs), were decreased in the post-induction therapy. CONCLUSION: Metabolomic profiling in ALL patients revealed a large number of alterations following induction chemotherapy. In particular, lipid metabolism was substantially altered. The changes in metabolites and complex lipids following induction therapy could provide insight into the adverse events experienced by ALL patients.


Assuntos
Quimioterapia de Indução , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Lipídeos , Metabolômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Espectrometria de Massas em Tandem
6.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185707

RESUMO

We previously reported heightened expression of the human endogenous retroviral protein HERV-K deoxyuridine triphosphate nucleotidohydrolase (dUTPase) in circulating monocytes and pulmonary arterial (PA) adventitial macrophages of patients with PA hypertension (PAH). Furthermore, recombinant HERV-K dUTPase increased IL-6 in PA endothelial cells (PAECs) and caused pulmonary hypertension in rats. Here we show that monocytes overexpressing HERV-K dUTPase, as opposed to GFP, can release HERV-K dUTPase in extracellular vesicles (EVs) that cause pulmonary hypertension in mice in association with endothelial mesenchymal transition (EndMT) related to induction of SNAIL/SLUG and proinflammatory molecules IL-6 as well as VCAM1. In PAECs, HERV-K dUTPase requires TLR4-myeloid differentiation primary response-88 to increase IL-6 and SNAIL/SLUG, and HERV-K dUTPase interaction with melanoma cell adhesion molecule (MCAM) is necessary to upregulate VCAM1. TLR4 engagement induces p-p38 activation of NF-κB in addition to p-pSMAD3 required for SNAIL and pSTAT1 for IL-6. HERV-K dUTPase interaction with MCAM also induces p-p38 activation of NF-κB in addition to pERK1/2-activating transcription factor-2 (ATF2) to increase VCAM1. Thus in PAH, monocytes or macrophages can release HERV-K dUTPase in EVs, and HERV-K dUTPase can engage dual receptors and signaling pathways to subvert PAEC transcriptional machinery to induce EndMT and associated proinflammatory molecules.


Assuntos
Retrovirus Endógenos , Transição Epitelial-Mesenquimal/imunologia , Hipertensão Pulmonar , Macrófagos/imunologia , Monócitos/imunologia , Artéria Pulmonar , Pirofosfatases/metabolismo , Animais , Antígeno CD146/metabolismo , Retrovirus Endógenos/metabolismo , Retrovirus Endógenos/patogenicidade , Células Endoteliais/metabolismo , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/virologia , Inflamação/metabolismo , Inflamação/virologia , Camundongos , Artéria Pulmonar/imunologia , Artéria Pulmonar/patologia , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo
7.
Sci Transl Med ; 13(592)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952674

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disorder leading to occlusive vascular remodeling. Current PAH therapies improve quality of life but do not reverse structural abnormalities in the pulmonary vasculature. Here, we used high-throughput drug screening combined with in silico analyses of existing transcriptomic datasets to identify a promising lead compound to reverse PAH. Induced pluripotent stem cell-derived endothelial cells generated from six patients with PAH were exposed to 4500 compounds and assayed for improved cell survival after serum withdrawal using a chemiluminescent caspase assay. Subsequent validation of caspase activity and improved angiogenesis combined with data analyses using the Gene Expression Omnibus and Library of Integrated Network-Based Cellular Signatures databases revealed that the lead compound AG1296 was positively associated with an anti-PAH gene signature. AG1296 increased abundance of bone morphogenetic protein receptors, downstream signaling, and gene expression and suppressed PAH smooth muscle cell proliferation. AG1296 induced regression of PA neointimal lesions in lung organ culture and PA occlusive changes in the Sugen/hypoxia rat model and reduced right ventricular systolic pressure. Moreover, AG1296 improved vascular function and BMPR2 signaling and showed better correlation with the anti-PAH gene signature than other tyrosine kinase inhibitors. Specifically, AG1296 up-regulated small mothers against decapentaplegic (SMAD) 1/5 coactivators, cAMP response element-binding protein 3 (CREB3), and CREB5: CREB3 induced inhibitor of DNA binding 1 and downstream genes that improved vascular function. Thus, drug discovery for PAH can be accelerated by combining phenotypic screening with in silico analyses of publicly available datasets.


Assuntos
Hipertensão Pulmonar , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Animais , Proliferação de Células , Simulação por Computador , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar , Qualidade de Vida , Ratos , Tirfostinas
8.
Circ Res ; 124(2): 211-224, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582451

RESUMO

RATIONALE: Maintaining endothelial cells (EC) as a monolayer in the vessel wall depends on their metabolic state and gene expression profile, features influenced by contact with neighboring cells such as pericytes and smooth muscle cells (SMC). Failure to regenerate a normal EC monolayer in response to injury can result in occlusive neointima formation in diseases such as atherosclerosis and pulmonary arterial hypertension. OBJECTIVE: We investigated the nature and functional importance of contact-dependent communication between SMC and EC to maintain EC integrity. METHODS AND RESULTS: We found that in SMC and EC contact cocultures, BMPR2 (bone morphogenetic protein receptor 2) is required by both cell types to produce collagen IV to activate ILK (integrin-linked kinase). This enzyme directs p-JNK (phospho-c-Jun N-terminal kinase) to the EC membrane, where it stabilizes presenilin1 and releases N1ICD (Notch1 intracellular domain) to promote EC proliferation. This response is necessary for EC regeneration after carotid artery injury. It is deficient in EC-SMC Bmpr2 double heterozygous mice in association with reduced collagen IV production, decreased N1ICD, and attenuated EC proliferation, but can be rescued by targeting N1ICD to EC. Deletion of EC- Notch1 in transgenic mice worsens hypoxia-induced pulmonary hypertension, in association with impaired EC regenerative function associated with loss of precapillary arteries. We further determined that N1ICD maintains EC proliferative capacity by increasing mitochondrial mass and by inducing the phosphofructokinase PFKFB3 (fructose-2,6-bisphosphatase 3). Chromatin immunoprecipitation sequencing analyses showed that PFKFB3 is required for citrate-dependent H3K27 acetylation at enhancer sites of genes regulated by the acetyl transferase p300 and by N1ICD or the N1ICD target MYC and necessary for EC proliferation and homeostasis. CONCLUSIONS: Thus, SMC-EC contact is required for activation of Notch1 by BMPR2, to coordinate metabolism with chromatin remodeling of genes that enable EC regeneration, and to maintain monolayer integrity and vascular homeostasis in response to injury.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Lesões das Artérias Carótidas/metabolismo , Comunicação Celular , Proliferação de Células , Células Endoteliais/metabolismo , Metabolismo Energético , Epigênese Genética , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Notch1/metabolismo , Adulto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Montagem e Desmontagem da Cromatina , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Receptor Notch1/deficiência , Receptor Notch1/genética , Transdução de Sinais , Remodelação Vascular , Adulto Jovem
9.
Circ Res ; 122(12): 1689-1702, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545367

RESUMO

RATIONALE: Pulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females. OBJECTIVE: To evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH. METHODS AND RESULTS: Male and female athymic rnu/rnu rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration. Plasma PGI2 (prostacyclin) levels were measured. Lung and right ventricles were assessed for the expression of the vasoprotective proteins COX-2 (cyclooxygenase 2), PTGIS (prostacyclin synthase), PDL-1 (programmed death ligand 1), and HO-1 (heme oxygenase 1). Inhibitors of these pathways were administered to athymic rats undergoing Treg immune reconstitution. Finally, human cardiac microvascular endothelial cells cocultured with Tregs were evaluated for COX-2, PDL-1, HO-1, and ER (estrogen receptor) expression, and culture supernatants were assayed for PGI2 and IL (interleukin)-10. SU5416-treatment and chronic hypoxia produced more severe PH in female than male athymic rats. Females were distinguished by greater pulmonary inflammation, augmented right ventricular fibrosis, lower plasma PGI2 levels, decreased lung COX-2, PTGIS, HO-1, and PDL-1 expression and reduced right ventricular PDL-1 levels. In both sexes, Treg immune reconstitution protected against PH development and raised levels of plasma PGI2 and cardiopulmonary COX-2, PTGIS, PDL-1, and HO-1. Inhibiting COX-2, HO-1, and PD-1 (programmed death 1)/PDL-1 pathways abrogated Treg protection. In vitro, human Tregs directly upregulated endothelial COX-2, PDL-1, HO-1, ERs and increased supernatant levels of PGI2 and IL-10. CONCLUSIONS: In 2 animal models of PH based on Treg deficiency, females developed more severe PH than males. The data suggest that females are especially reliant on the normal Treg function to counteract the effects of pulmonary vascular injury leading to PH.


Assuntos
Hipertensão Pulmonar/prevenção & controle , Fatores Sexuais , Linfócitos T Reguladores/fisiologia , Inibidores da Angiogênese/farmacologia , Animais , Antígeno B7-H1/análise , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Doença Crônica , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/metabolismo , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Epoprostenol/antagonistas & inibidores , Epoprostenol/sangue , Epoprostenol/metabolismo , Feminino , Heme Oxigenase (Desciclizante)/análise , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Indóis/farmacologia , Oxirredutases Intramoleculares/análise , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Pulmão/metabolismo , Masculino , Prostaglandinas I/biossíntese , Pirróis/farmacologia , Ratos , Ratos Nus , Receptores de Estrogênio/análise , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Linfócitos T Reguladores/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
10.
Circulation ; 136(20): 1920-1935, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28935667

RESUMO

BACKGROUND: Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. METHODS: Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. RESULTS: SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1ß, and tumor necrosis factor α) in circulating monocytes, pulmonary arterial endothelial cells, and also activated B cells. Vulnerability of pulmonary arterial endothelial cells (PAEC) to apoptosis was increased by HERV-K deoxyuridine triphosphate nucleotidohydrolase in an interleukin 6-independent manner. Furthermore, 3 weekly injections of HERV-K deoxyuridine triphosphate nucleotidohydrolase induced hemodynamic and vascular changes of pulmonary hypertension in rats (n=8) and elevated interleukin 6. CONCLUSIONS: Our study reveals that upregulation of the endogenous retrovirus HERV-K could both initiate and sustain activation of the immune system and cause vascular changes associated with PAH.


Assuntos
Hipertensão Pulmonar/imunologia , Mediadores da Inflamação/imunologia , Regulação para Cima/fisiologia , Proteínas Virais/biossíntese , Proteínas Virais/imunologia , Adolescente , Adulto , Animais , Complexo Antígeno-Anticorpo/biossíntese , Complexo Antígeno-Anticorpo/imunologia , Células Cultivadas , Criança , Técnicas de Cocultura , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Lactente , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Proteína 1 com Domínio SAM e Domínio HD/biossíntese , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA