Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0082824, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287455

RESUMO

In vivo imaging of bacterial infection models enables noninvasive and temporal analysis of individuals, enhancing our understanding of infectious disease pathogenesis. Conventional in vivo imaging methods for bacterial infection models involve the insertion of the bacterial luciferase LuxCDABE into the bacterial genome, followed by imaging using an expensive ultrasensitive charge-coupled device (CCD) camera. However, issues such as limited light penetration into the body and lack of versatility have been encountered. We focused on near-infrared (NIR) light, which penetrates the body effectively, and attempted to establish an in vivo imaging method to evaluate the number of lung-colonizing bacteria during the course of bacterial pneumonia. This was achieved by employing a novel versatile system that combines plasmid-expressing firefly luciferase bacteria, NIR substrate, and an inexpensive, scientific complementary metal-oxide semiconductor (sCMOS) camera. The D-luciferin derivative "TokeOni," capable of emitting NIR bioluminescence, was utilized in a mouse lung infection model of Acinetobacter baumannii, an opportunistic pathogen that causes pneumonia and is a concern due to drug resistance. TokeOni exhibited the highest sensitivity in detecting bacteria colonizing the mouse lungs compared with other detection systems such as LuxCDABE, enabling the monitoring of changes in bacterial numbers over time and the assessment of antimicrobial agent efficacy. Additionally, it was effective in detecting A. baumannii clinical isolates and Klebsiella pneumoniae. The results of this study are expected to be used in the analysis of animal models of infectious diseases for assessing the efficacy of therapeutic agents and understanding disease pathogenesis. IMPORTANCE: Conventional animal models of infectious diseases have traditionally relied upon average assessments involving numerous individuals, meaning they do not directly reflect changes in the pathology of an individual. Moreover, in recent years, ethical concerns have resulted in the demand to reduce the number of animals used in such models. Although in vivo imaging offers an effective approach for longitudinally evaluating the pathogenesis of infectious diseases in individual animals, a standardized method has not yet been established. To our knowledge, this study is the first to develop a highly versatile in vivo pulmonary bacterial quantification system utilizing near-infrared luminescence, plasmid-mediated expression of firefly luciferase in bacteria, and a scientific complementary metal-oxide semiconductor camera. Our research holds promise as a useful tool for assessing the efficacy of therapeutic drugs and pathogenesis of infectious diseases.

2.
J Biochem ; 172(5): 321-327, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36047849

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a crucial role in numerous brain functions, including memory consolidation. Previously, we generated a Bdnf-Luciferase transgenic (Bdnf-Luc) mouse strain to visualize changes in Bdnf expression using in vivo bioluminescence imaging. We successfully visualized activity-dependent Bdnf induction in living mouse brains using a d-luciferin analog, TokeOni, which distributes to the brain and produces near-infrared bioluminescence. In this study, we compared the patterns of bioluminescence signals within the whole body of the Bdnf-Luc mice produced by d-luciferin, TokeOni and seMpai, another d-luciferin analog that produces a near-infrared light. As recently reported, hepatic background signals were observed in wild-type mice when using TokeOni. Bioluminescence signals were strongly observed from the region containing the liver when using d-luciferin and TokeOni. Additionally, we detected signals from the brain when using TokeOni. Compared with d-luciferin and TokeOni, signals were widely detected in the whole body of Bdnf-Luc mice by seMpai. The signals produced by seMpai were strong in the regions containing skeletal muscles in particular. Taken together, the patterns of bioluminescence signals in Bdnf-Luc mice vary when using different luciferase substrates. Therefore, the expression of Bdnf in tissues and organs of interest could be visualized by selecting an appropriate substrate.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Luciferinas , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Luciferases/genética , Luciferases/metabolismo
3.
Photochem Photobiol ; 97(5): 1016-1022, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081790

RESUMO

AkaLumine hydrochloride, named TokeOni, is one of the firefly luciferin analogs, and its reaction with firefly luciferase produces near-infrared (NIR) bioluminescence. Prior to studying the bioluminescence mechanism, basic knowledge about the chemical structures, electronic states, and absorption properties of TokeOni at various pH values of solution has to be acquired. In this paper, the absorption spectra for TokeOni and AkaLumine at pH 2-10 were measured. Density functional theory (DFT) calculations, time-dependent DFT calculations, and the vibrational analyses were carried out. The absorption spectra indicate that the chemical forms of TokeOni in solutions are same as those of AkaLumine. The peaks at pH 7-10 in the absorption spectra correspond to the excitation from the ground state of a carboxylate anion of AkaLumine, the peak at pH 2 corresponds to the excitation from the ground state of a carboxylate anion with an N-protonated thiazoline ring and N-protonated dimethylamino group of AkaLumine, and the peak at pH 4 corresponds to the excitation from the ground state of a carboxylate anion with an N-protonated thiazoline ring of AkaLumine.


Assuntos
Vaga-Lumes , Luciferina de Vaga-Lumes , Animais , Ânions , Luciferina de Vaga-Lumes/química , Concentração de Íons de Hidrogênio , Luciferases de Vaga-Lume/química
4.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673331

RESUMO

Bioluminescence reactions are widely applied in optical in vivo imaging in the life science and medical fields. Such reactions produce light upon the oxidation of a luciferin (substrate) catalyzed by a luciferase (enzyme), and this bioluminescence enables the quantification of tumor cells and gene expression in animal models. Many researchers have developed single-color or multicolor bioluminescence systems based on artificial luciferin analogues and/or luciferase mutants, for application in vivo bioluminescence imaging (BLI). In the current review, we focus on the characteristics of firefly BLI technology and discuss the development of luciferin analogues for high-resolution in vivo BLI. In addition, we discuss the novel luciferin analogues TokeOni and seMpai, which show potential as high-sensitivity in vivo BLI reagents.


Assuntos
Diagnóstico por Imagem , Luciferina de Vaga-Lumes/química , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA