RESUMO
O. ficus-indica (prickly pear cactus) is an important forage and food source in arid and semiarid ecosystems and is the most important cactus species in cultivation globally. The high degree of apomixis in the species is a hindrance in plant breeding programs where genetic segregation is sought for the selection of superior genotypes. To understand if in ovulo embryo rescue could increase the proportion of zygotic seedlings, we compared the mature seed-derived seedlings with those regenerated from in vitro embryo rescue at 20, 25, 30, 35, and 40 post-anthesis days (PADs) in four Italian cultivars. The seedlings were classified as apomictic or zygotic based on molecular marker analysis using inter-sequence single repeat (ISSR) primers. Multiple embryos were recovered from all the cultured immature ovules, and plantlets were regenerated and acclimatized to the field post hardening, with success rates ranging from 62% ('Senza spine') to 83% ('Gialla'). The level of polyembryony differed among cultivars and recovery dates, with the highest being 'Rossa', producing 4.8 embryos/ovule at 35 PADs, and 'Gialla', the lowest, with 2.7 at 40 PADs. The maximum number of embryos observed within a single ovule was 14 in 'Trunzara bianca'. ISSR analysis revealed that ovule culture at 35 PADs produced the highest percentage of zygotic seedlings in all the cultivars, from 51% ('Rossa') to 98% ('Gialla'), with a high genotype effect as well. Mature seeds produced much fewer seedlings per seed, ranging from 1.2 in 'Trunzara bianca' to 2.0 in 'Rossa' and a lower percentage of zygotic seedlings (from 14% in 'Rossa' to 63% in 'Gialla'). Our research opens a pathway to increase the availability of zygotic seedlings in O. ficus-indica breeding programs through in ovulo embryo culture.
RESUMO
It was previously shown that the antitumor and cytotoxic activity of the essential oil (EO) extracted from the aerial parts of Glandora rosmarinifolia appears to involve a pro-oxidant mechanism in hepatocellular carcinoma (HCC) and in triple-negative breast cancer (TNBC) cell lines. Its most abundant compound is a hydroxy-methyl-naphthoquinone isomer. Important pharmacological activities, such as antitumor, antibacterial, antifungal, antiviral and antiparasitic activities, are attributed to naphthoquinones, probably due to their pro-oxidant or electrophilic potential; for some naphthoquinones, a mechanism of action of topoisomerase inhibition has been reported, in which they appear to act both as catalytic inhibitors and as topoisomerase II poisons. Our aim was to evaluate the cytotoxic activity of the essential oil on an acute myeloid leukemia cell line HL-60 and on its multidrug-resistant (MDR) variant HL-60R and verify its ability to interfere with topoisomerase II activity. MTS assay showed that G. rosmarinifolia EO induced a decrease in tumor cell viability equivalent in the two cell lines; this antitumor effect could depend on the pro-oxidant activity of EO in both cell lines. Furthermore, G. rosmarinifolia EO reduced the activity of Topo II in the nuclear extracts of HL-60 and HL-60R cells, as inferred from the inability to convert the kinetoplast DNA into the decatenated form and then not inducing linear kDNA. Confirming this result, flow cytometric analysis proved that EO induced a G0-G1 phase arrest, with cell reduction in the S-phase. In addition, the combination of EO with etoposide showed a good potentiation effect in terms of cytotoxicity in both cell lines. Our results highlight the antitumor activity of EO in the HL-60 cell line and its MDR variant with a peculiar mechanism as a Topo II modulator. Unlike etoposide, EO does not cause stabilization of a covalent Topo II-DNA intermediate but acts as a catalytic inhibitor. These data make G. rosmarinifolia EO a potential anticancer drug candidate due to its cytotoxic action, which is not affected by multidrug resistance.
Assuntos
Antineoplásicos , Boraginaceae , Carcinoma Hepatocelular , Leucemia Mieloide Aguda , Neoplasias Hepáticas , Naftoquinonas , Óleos Voláteis , Antineoplásicos/farmacologia , Boraginaceae/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/farmacologia , Óleos Voláteis/farmacologia , Espécies Reativas de Oxigênio , Inibidores da Topoisomerase II/farmacologiaRESUMO
Drug resistance is the ability of cancer cells to gain resistance to both conventional and novel chemotherapy agents, and remains a major problem in cancer therapy. Resistance mechanisms are multifactorial and involve more strictly pharmacological factors, such as P-glycoprotein (P-gp) and biological factors such as inhibitor of apoptosis proteins (IAPs) and the nuclear factor-kappa B (NF-κB) pathway. Possible therapeutic strategies for the treatment of acute myeloid leukemia (AML) have increased in recent years; however, drug resistance remains a problem for most pa-tients. Phytol and heptacosane are the major compounds of Euphorbia intisy essential oil (EO) which were demonstrated to inhibit P-gp in a multidrug resistant in vitro model of AML. This study investigated the mechanism by which phytol and heptacosane improve P-gp-mediated drug transport. Phytol suppresses the P-gp expression via NF-κB inhibition and does not seem to act on the efflux system. Heptacosane acts as a substrate and potent P-gp inhibitor, demonstrating the ability to retain the substrate doxorubicin inside the cell and enhancing its cytotoxic effects. Our results suggest that these compounds act as non-toxic modulators of P-gp through different mechanisms and are able to revert P-gp-mediated drug resistance in tumor cells.
RESUMO
This study is the first approach to in vitro asymbiotic germination of two species of Sicilian threatened terrestrial orchids, Anacamptis longicornu and Ophrys panormitana. Seeds were collected in the wild and cultured in two different media-Orchimax medium (OM) and Murashige and Skoog (MS)-and exposed to different photoperiods and temperatures to evaluate the best conditions for the specific stages of development. The germination of A. longicornu was very high on OM (95.5%) and lower on MS medium (21.4%), whereas O. panormitana germinated only on OM medium, with significantly lower percentages (12.0%), compared with A. longicornu. This difference is caused by variation in quality and quantity of nutrients used, primarily by nitrogen source. The results show that temperature and photoperiod widely affect seed germination and development. Although further investigations on asymbiotic and symbiotic germination are needed for the improvement of conservation of Mediterranean terrestrial orchids, our results contribute to the conservation of this group of plants.
RESUMO
Lithops (Aizoaceae) are succulent plants consisting of a pair of opposite succulent leaves inserted on an extremely short stem. The apical meristem produces a new leaf pair that develops between the older pair, recycling water and metabolites. This peculiar anatomy and growth form make ecophysiological studies quite challenging. Lithops are considered to have CAM metabolism, though experimental evidence is scarce. We followed the changes in carbon and nitrogen isotopic values in mature leaves, young leaves and roots, with the aim of investigating how the use of resources is optimized to achieve survival in extremely arid environments. Two-year-old plants of Lithops aucampiae were grown in pots with no irrigation for six months. Plants were sampled periodically, and isotopic values were recorded in relation to the developmental pattern of the leaves. δ13C ranged from -16.4 to -13.1 with leaves showing less negative values than roots. δ15N ranged between -0.8 and 3.9 with leaves showing higher values than roots. To the best of our knowledge, this is the first experimental evidence of carbon and nitrogen isotope values in Lithops, the former providing evidence for CAM metabolism.
Assuntos
Aizoaceae , Carbono , Isótopos de Carbono , Nitrogênio , Isótopos de Nitrogênio , Folhas de PlantaRESUMO
Euphorbia species have a large spectrum of traditional medicinal uses. We tested the biological activities of the essential oil (EO) of Euphorbia intisy Drake in an acquired multidrug resistance leukemia model to assess whether the EO obtained by hydrodistillation of stems was able to reverse the resistant phenotype. HL-60R cell lines are characterized by the overexpression of P-glycoprotein (P-gp), inhibitors of apoptosis proteins (IAPs) and constitutive expression of NF-κB. EO chemical composition was determined by GC/MS analysis; cytotoxic activity of EO by MTS assay alone or in combination with doxorubicin; pro-apoptotic effect and doxorubicin accumulation were analyzed by flow cytometry; P-gp ATPase activity was measured by P-gp-Glo™ assay systems kit. The ability to inhibit NF-κB and its target genes was also assessed. E. intisy EO exhibited a comparable cytotoxic effect and ability to block P-gp in both the HL-60 and its MDR variant HL-60R. In addition, EO suppressed P-gp protein expression and significantly downregulated MDR1 mRNA level, as well as some IAPs proteins, probably through the inhibition of NF-κB. Our results suggest that E. intisy EO could reverse P-gp-mediated drug resistance in tumor cells acting as a chemosensitizing agent.
RESUMO
Seagrass meadows, algal forests and mussel beds are widely regarded as foundation species that support communities providing valuable ecosystem services in many coastal regions; however, quantitative evidence of the relationship is scarce. Using the Baltic Sea as a case study, a region of significant socio-economic importance in the northern hemisphere, we systematically synthesized the primary literature and summarized the current knowledge on ecosystem services derived from seagrass, macroalgae, and mussels (see animated video summary of the manuscript: Video abstract). We found 1740 individual ecosystem service records (ESR), 61% of which were related to macroalgae, 26% to mussel beds and 13% to seagrass meadows. The most frequently reported ecosystem services were raw material (533 ESR), habitat provision (262 ESR) and regulation of pollutants (215 ESR). Toxins (356 ESR) and nutrients (302 ESR) were the most well-documented pressures to services provided by coastal ecosystems. Next, we assessed the current state of knowledge as well as knowledge transfer of ecosystem services to policies through natural, social, human and economic dimensions, using a systematic scoring tool, the Eco-GAME matrix. We found good quantitative information about how ecosystems generated the service but almost no knowledge of how they translate into socio-economic benefits (8 out of 657 papers, 1.2%). While we are aware that research on Baltic Sea socio-economic benefits does exist, the link with ecosystems providing the service is mostly missing. To close this knowledge gap, we need a better analytical framework that is capable of directly linking existing quantitative information about ecosystem service generation with human benefit.
RESUMO
We investigated the response of two Sicilian grapevine cultivars, Catarratto and Nero d'Avola, to potassium deficiency and drought stress. Two-year-old plants grafted on 1103 Paulsen were grown in agriperlite, with or without potassium in the fertigation solution for six weeks, and subjected to moderate drought stress by suspending irrigation for one week. Potassium content of leaves, roots and xylem sap were measured with an ion-selective electrode. Changes in stomatal conductance, stem and leaf water potential and hydraulic conductance were compared between genotypes and treatments. Potassium deficiency led to significant decreases in leaf potassium content in both cultivars and under both well-watered and drought stress conditions. Potassium content in xylem sap showed no significant differences between cultivars and was correlated with stem hydraulic conductance, particularly in the drought stress treatments. Under drought stress conditions, potassium availability led to an increase in stomatal conductance, particularly in Nero d'Avola. Both cultivars showed a rather isohydric behavior under these experimental conditions, and the level of isohydry varied with potassium availability. These results can be useful for the development of optimal fertigation practices and the selection of drought tolerant varieties.
Assuntos
Secas , Potássio , Vitis , Água , Folhas de Planta/química , Raízes de Plantas/química , Potássio/análise , Potássio/metabolismo , Vitis/química , Vitis/fisiologia , Água/metabolismo , Xilema/químicaRESUMO
Drug resistance remains a major challenge in the treatment of cancer. The multiplicity of the drug resistance determinants raises the question about the optimal strategies to deal with them. Essential oils showed to inhibit the growth of different tumor cell types. Essential oils contain several chemical classes of compounds whose heterogeneity of active moieties can help prevent the development of drug resistance. In the present paper, we analyzed, by gas chromatography-mass spectrometry the chemical composition of the essential oil of the leaves of Kalanchoe beharensis obtained by hydrodistillation and compared the chemical composition of its essential oil with that of Cyphostemma juttae. Our results demonstrated the anticancer and proapoptotic activities of both species against acute myeloid leukemia on an in vitro model and its multidrug resistant variant involving NF-κB pathway. The essential oils of both species produced a significant decrease in many targets of NF-κB both at mRNA and protein levels. The results corroborate the idea that essential oils may be a good alternative to traditional drugs in the treatment of cancer, especially in drug resistant cancer.
RESUMO
Drug resistance is a major obstacle in antibiotic and antitumor chemotherapy. In response to the necessity to find new therapeutic strategies, plant secondary metabolites including essential oils (EOs) may represent one of the best sources. EOs in plants act as constitutive defenses against biotic and abiotic stress, and they play an important role in the pharmacology for their low toxicity, good pharmacokinetic and multitarget activity. In this context, natural products such as EOs are one of the most important sources of drugs used in pharmaceutical therapeutics. The aim of this paper was to identify the chemical composition of the essential oil of Alluaudia procera leaves, obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry, and to verify its biological activities on acute myeloid leukemia cancer cell HL60 and its multidrugresistant variant HL60R and the Gram-positive Staphylococcus aureus exhibiting multi-antibiotic resistance. We speculate that cytotoxic and antibiotic effects observed in the tested resistant models may be due to the coordinate activities of forty compounds detected or to the C16 macrocyclic lactones which are the major ones (30%). Our data confirm the possibility of using EOs as therapeutic strategies in resistant models is due to the heterogeneous composition of the oils themselves.
Assuntos
Resistência a Medicamentos , Magnoliopsida/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Análise EspectralRESUMO
The genus Cyphostemma (Planch.) Alston (Vitaceae) includes about 150 species distributed in eastern and southern Africa and Madagascar. Some species are used in traditional medicine and their biological activities, including antiproliferative effects against cancer cell lines, have been demonstrated. To date no investigations on Cyphostemma essential oils have been carried out. Essential oils, which play important roles in plant defenses have been demonstrated to be active in the treatment of several human diseases and to enhance bioavability of other drugs. The aim of this paper was to identify the chemical composition of the essential oil of the leaves of Cyphostemma juttae (Dinter & Gilg) Desc. and to verify some biological activities on two triple negative breast cancer cell lines (MDA-MB-231, SUM 149), characterized by the over-expression of the transcription factor NF-κB. In the essential oil, obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry, 39 compounds were detected and with phytol (30%) dominating the chemical composition. C. juttae essential oil reduced cell growth and showed a pro-oxidant activity in both cell lines. Moreover, C. juttae essential oil caused a substantial decrease of NF-κB activation and consequently a significant reduction of some NF-κB target genes. The present study shows for the first time the cytotoxic properties of C. juttae essential oil and highlight its availability to interfere with NF-κB pathway, suggesting a potential therapeutic use in triple negative breast cancers (TNBCs) of this essential oil.
Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Vitaceae/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Folhas de Planta/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/farmacologiaRESUMO
Iris species can adopt different pollination strategies to attract their pollinators, generalized shelter-mimicking, specialized deceptive sexual-mimicking or food-rewarding. As attractive stimuli, Iris flowers may use their colours, large-size, symmetry, and volatile organic compounds (VOCs). However, relatively few studies investigated Iris floral olfactory cues in the context of plant-visitor/pollinator interactions. In the present study we combined the identification of the floral volatiles of the nectariferous I. planifolia with insects visiting its flowers to gather data on its biology. Floral volatiles were collected in the natural environment by dynamic headspace and analysed by gas chromatography-mass spectrometry (GC-MS). Insect visitors/pollinators were also recorded. The volatile bouquet was aromatic-dominated with 1,4 dimethoxybenzene as major compound. Among the insects visiting its flowers, bumble and honey bees were the most abundant followed by hover flies. Overall, our results suggest that I. planifolia advertises its food reward by an aromatic dominated volatile composition.
Assuntos
Flores/fisiologia , Insetos/fisiologia , Gênero Iris/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Anisóis/análise , Abelhas , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Gênero Iris/química , Itália , PolinizaçãoRESUMO
Sexually deceptive orchid flowers use visual, tactile and olfactory cues of female insects in order to attract males of one or a few closely related species as pollinators. Ophrys L. is the most species-rich genus of sexually deceptive orchids in the Mediterranean Basin. Despite Ophrys pollinated by Andrena male bees use alkanes and mainly alkenes with specific double-bond positions as key signals that trigger pseudocopulatory behavior, some volatile organic compounds (VOCs) with low molecular weight were found as long-range attractants non-eliciting copulatory behavior. Since floral scents in Ophrys have been extensively studied by solvent extractions here we aimed to understand which floral volatiles are found when two different collection methods are used in Ophrys panormitana flowers. By knowing their chemical composition, we could better understand the scent chemistry of this Ophrys species without overlooking VOCs which could also have a function in its pollination biology. Scent samples collected by dynamic headspace and by solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The floral scent of O. panormitana is composed by a bouquet of VOCs with lower and higher molecular weights. The headspace samples contained VOCs with higher volatility (mainly one aliphatic alcohol and two aliphatic ketones) whereas the solvent extracts were composed by VOCs with lower volatility (exclusively long-chain alkanes and alkenes). Overlapping in VOCs between headspace and solvent samples were not found. For the first time Andrena nigroaenea was observed during the pseudocopulation and removing the pollinaria of a flower of O. panormitana. Abbreviations: VOCs, volatile organic compounds; GC/MS, gas chromatography-mass spectrometry; KRI, Kovats Retention Indices.
Assuntos
Orchidaceae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Polinização/fisiologia , Compostos Orgânicos Voláteis/análiseRESUMO
The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Boraginaceae/química , Óleos Voláteis/química , Oxidantes/farmacologia , Óleos de Plantas/química , Compostos Orgânicos Voláteis/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Concentração Inibidora 50 , Oxidantes/química , Oxidantes/isolamento & purificação , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificaçãoRESUMO
Several taxa of Cactaceae are endangered by overcollection for commercial purposes, and most of the family is included in the Convention on International Trade in Endangered Species of Fauna and Flora (CITES). Micropropagation may play a key role to keep the pressure off wild populations and contribute to ex situ conservation of endangered taxa. One of the limits of micropropagation is the species-specific requirement of plant regulators for each taxon and sometimes even for different genotypes. With the micrografting technique the rootstock directly provides the scion with the necessary hormonal requirements. In this paper we present data on in vitro grafting of Pelecyphora aselliformis Ehrenberg, an Appendix I CITES listed species critically endangered and sought after by the horticultural trade, on micropropagated Opuntia ficus-indica Miller. Apical and sub-apical scions of P. aselliformis were used to perform micrografting with a successful rate of 97 and 81 % respectively. Survival rate after ex vivo transfer was 85 %. We hypothesize that this method could be applied to other endangered, slow growing taxa of Cactaceae thus contributing to the conservation of this endangered family.
RESUMO
Floral scent in sapromyiophilous plants often consists of complex blends with not only fetid (e.g., sulfides) but also sweet (e.g., terpenoids) volatile organic compounds, and a recent study suggests that both groups of compounds are involved in pollinator attraction. However, little is known about the number and identity of compounds involved in pollinator attraction in these deceptive plants that mimic breeding sites of fly pollinators. In the present paper, we studied flower volatiles of sapromyiophilous Periploca laevigata and their capability to elicit biological responses in one of the pollinator species, Musca domestica. Floral volatiles were collected by dynamic headspace and analyzed by gas chromatography/mass spectrometry (GC/MS), and electrophysiological (GC/EAD) and behavioral assays (two choice olfactometer) were conducted. In the floral scent of P. laevigata, we detected 44 compounds, of which indole, ß-caryophyllene, and germacrene D, as well as dimethyl trisulfide, which was present in trace amounts, were electrophysiologically active in the antennae of M. domestica. However, when we evaluated in behavioral experiments the attractiveness of the electrophysiologically active compounds (complete mixture against partial mixtures or against single compounds), we found that indole was the only attractive compound for the flies.
Assuntos
Apocynaceae/química , Moscas Domésticas/fisiologia , Polinização , Compostos Orgânicos Voláteis/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Olfatometria , Percepção OlfatóriaRESUMO
Xylem hydraulic conductance varies in response to changes in sap solute content, and in particular of potassium (K(+)) ion concentration. This phenomenon, known as the 'ionic effect', is enhanced in embolized stems, where it can compensate for cavitation-induced loss of hydraulic conductance. Previous studies have shown that in well-watered laurel plants (Laurus nobilis L.), potassium concentration of the xylem sap and plant hydraulic conductance increased 24 h after fertilization with KCl. The aim of this work was to test whether water-stressed laurel plants, grown under low potassium availability, could recover earlier from stress when irrigated with a KCl solution instead of potassium-free water. Two-year-old potted laurel seedlings were subjected to water stress by suspending irrigation until leaf conductance to water vapour (g(L)) dropped to â¼30% of its initial value and leaf water potential (ψ(L)) reached the turgor loss point (ψ(TLP)). Plants were then irrigated either with water or with 25 mM KCl and monitored for water status, gas exchange and plant hydraulics recovery at 3, 6 and 24 h after irrigation. No significant differences were found between the two experimental groups in terms of ψ(L), g(L), plant transpiration, plant hydraulic conductance or leaf-specific shoot hydraulic conductivity. Analysis of xylem sap potassium concentration showed that there were no significant differences between treatments, and potassium levels were similar to those of potassium-starved but well-watered plants. In conclusion, potassium uptake from the soil solution and/or potassium release to the xylem appeared to be impaired in water-stressed plants, at least up to 24 h after relief from water stress, so that fertilization after the onset of stress did not result in any short-term advantage for recovery from drought.
Assuntos
Secas , Fertilizantes , Laurus/fisiologia , Potássio/metabolismo , Estresse Fisiológico , Água , Xilema/fisiologia , Íons/metabolismo , Laurus/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal , Xilema/metabolismoRESUMO
The essential oils from the leaves and flowers of Chiliadenus lopadusanus growing on Lampedusa Island were obtained by hydrodistillation and analyzed by GC-MS. The major component was camphor (39.4% in the leaves and 24.0% in the flowers), followed in the leaves by torreyol (6.7%), t-cadinol (5.2%) and 1,8-cineole (3.8%), while in the flowers by t-cadinol (15.2%), t-muurolol (5.1%) and torreyol (4.5%). Among the compounds identified, several seem to play a role in antibacterial, antifungal, allelopathic and spasmolytic activity. In addition, several compounds identified in this study seem to influence the attraction of Megachile (Eutricharaea) apicalis (Megachilidae) and Halictus (Seladonia) gemmeus (Halictidae), two hymenopteran here identified as pollinators of Chiliadenus lopadusanus.
Assuntos
Asteraceae/química , Óleos Voláteis/química , Animais , Flores/química , Insetos , Itália , Folhas de Planta/químicaRESUMO
The essential oils composition of the skin, pulp and seeds from fruits of two Sicilian cultivars of Opuntia ficus-indica (cv. Sanguigna and cv. Surfarina) has been obtained by hydrodistillation and the possible antioxidant, antimicrobial and semiochemical roles have been investigated comparing the data with those reported in the literature. The presence of antioxidants and antimicrobials found in this study increases the spectrum of compounds that have beneficial properties in O. ficus-indica. In addition, several compounds identified in this study have been reported to influence the behaviour of Ceratitis capitata, a phytophagous pest which causes severe damages to several crops including O. ficus-indica and the kairomonal activity of the odour of the fruits seems provided by a blend of compounds found in the various matrices analysed.