Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Pharm Biomed Anal ; 249: 116372, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39079353

RESUMO

We explored the feasibility of high-speed and high-accuracy quantification of active pharmaceutical ingredient (API) content in tablet products by near-infrared (NIR) spectroscopy to improve the reliability of pharmaceuticals. For this purpose, we employed a high-power NIR time-stretch transmission spectrometer recently developed by us. By using this transmission spectrometer with a multivariate calibration model, we demonstrated the ability to quantify API content with a short measurement time of 3.9 ms per tablet for model pharmaceuticals. For the model tablet, the quantification ability of our spectrometer was comparable to that achieved by a commonly used Fourier-transform NIR (FT-NIR) spectrometer with a measurement time of several seconds. We also confirmed that the effect of irradiating tablets with the NIR pulses used in our spectrometer was negligible.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Comprimidos , Comprimidos/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Fatores de Tempo , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
Plant Direct ; 8(7): e619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962171

RESUMO

Plant galls generated by insects have highly organized structures, providing nutrients and shelter to the insects living within them. Most research on the physiological and molecular mechanisms of gall development has focused on single galls. To understand the diversity of gall development, we examined five galls with different morphologies generated by distinct species of Rhopalomyia (gall midge; Diptera: Cecidomyiidae) on a single host plant of Artemisia indica var. maximowiczii (Asteraceae). Vasculature developed de novo within the galls, indicating active transport of nutrients between galls and the host plant. Each gall had a different pattern of vasculature and lignification, probably due to differences in the site of gall generation and the gall midge species. Transcriptome analysis indicated that photosynthetic and cell wall-related genes were down-regulated in leaf and stem galls, respectively, compared with control leaf and stem tissues, whereas genes involved in floral organ development were up-regulated in all types of galls, indicating that transformation from source to sink organs occurs during gall development. Our results help to understand the diversity of galls on a single herbaceous host plant.

3.
Commun Biol ; 7(1): 431, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637665

RESUMO

The ability to respond to varying environments is crucial for sessile organisms such as plants. The amphibious plant Rorippa aquatica exhibits a striking type of phenotypic plasticity known as heterophylly, a phenomenon in which leaf form is altered in response to environmental factors. However, the underlying molecular mechanisms of heterophylly are yet to be fully understood. To uncover the genetic basis and analyze the evolutionary processes driving heterophylly in R. aquatica, we assembled the chromosome-level genome of the species. Comparative chromosome painting and chromosomal genomics revealed that allopolyploidization and subsequent post-polyploid descending dysploidy occurred during the speciation of R. aquatica. Based on the obtained genomic data, the transcriptome analyses revealed that ethylene signaling plays a central role in regulating heterophylly under submerged conditions, with blue light signaling acting as an attenuator of ethylene signal. The assembled R. aquatica reference genome provides insights into the molecular mechanisms and evolution of heterophylly.


Assuntos
Rorippa , Rorippa/genética , Etilenos , Folhas de Planta/genética , Adaptação Fisiológica , Cromossomos
4.
J Bone Miner Metab ; 42(2): 166-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376670

RESUMO

INTRODUCTION: Osteoporosis is a global health issue. Bisphosphonates that are commonly used to treat osteoporosis suppress both bone resorption and subsequent bone formation. Inhibition of cathepsin K, a cysteine proteinase secreted by osteoclasts, was reported to suppress bone resorption while preserving or increasing bone formation. Analyses of the different effects of antiresorptive reagents such as bisphosphonates and cysteine proteinase inhibitors will contribute to the understanding of the mechanisms underlying bone remodeling. MATERIALS AND METHODS: Our team has developed an in vitro system in which bone remodeling can be temporally observed at the cellular level by 2-photon microscopy. We used this system in the present study to examine the effects of the cysteine proteinase inhibitor E-64 and those of zoledronic acid on bone remodeling. RESULTS: In the control group, the amount of the reduction and the increase in the matrix were correlated in each region of interest, indicating the topological and quantitative coordination of bone resorption and formation. Parameters for osteoblasts, osteoclasts, and matrix resorption/formation were also correlated. E-64 disrupted the correlation between resorption and formation by potentially inhibiting the emergence of spherical osteoblasts, which are speculated to be reversal cells in the resorption sites. CONCLUSION: These new findings help clarify coupling mechanisms and will contribute to the development of new drugs for osteoporosis.


Assuntos
Reabsorção Óssea , Cisteína Proteases , Osteoporose , Humanos , Cisteína Proteases/farmacologia , Cisteína Proteases/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Osteoclastos , Catepsina K , Osteoporose/tratamento farmacológico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico
5.
Sci Rep ; 13(1): 15206, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710010

RESUMO

In this retrospective case-control study, we aimed to investigate the mid- to long-term outcomes and factors involved in minimally invasive glaucoma surgery using the Kahook Dual Blade. Of the 229 cases since 2018 in which the dual blades were used for glaucoma surgery at the Tenri Hospital, 133 eyes of 98 patients who followed up for more than 3 months were included. Intraocular pressure (IOP), number of drops score, and need for reoperation were evaluated on day 1 and at 1, 3, 6, 9, and 12 months postoperatively. Intraocular pressure spikes occurred in 25 patients postoperatively (18.8%), occurring at approximately 4.5 days (1-10.25). The preoperative number of eye drops used and ocular axial length were found to be associated with the occurrence of spikes (OR = 1.45, 95% CI 1.02-2.06; P = 0.025 and OR = 1.41, 95% CI 0.98-1.25; P = 0.072, respectively). At the 12-month mark, no significant relationship was found between the presence of spikes or incisional extent scores and the amount of change in IOP and number of drops scores. Patients with severe visual field impairment, high preoperative IOP and drop scores, and long ocular axial length may require more frequent follow-ups after surgery to check for spikes.


Assuntos
Glaucoma , Pressão Intraocular , Humanos , Estudos de Casos e Controles , Estudos Retrospectivos , Glaucoma/cirurgia , Tonometria Ocular
6.
Tissue Eng Part A ; 29(19-20): 541-556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548556

RESUMO

Cartilage is considered to be immune privileged in general. Clinically, live cells are removed from subcutaneously transplanted allogeneic cartilage mainly for preservation and for infection control. However, because maintaining cartilage feature requires live chondrocyte, it would be beneficial to subcutaneously transplant cartilage with live chondrocyte even if it was allogeneic. We harvested femoral head from 3-week-old male C57BL/6 mice, subcutaneously transplanted to 6-week-old male mice, BALB/c, BALB/c nu/nu, or C57BL/6-Tg (enhanced green fluorescent protein [EGFP] under the control of the CMV-IE enhancer, chicken beta-actin promoter, rabbit beta-globin genomic DNA [CAG promoter]), as allogeneic, allogeneic immunodeficient control, or syngeneic transplantation. We also transplanted cartilaginous particles from human induced pluripotent stem cells derived from human leukocyte antigen homozygous donor to 6-week-old male mice either BALB/c and BALB/c nu/nu as xenogeneic or xenogeneic immunodeficient control. The transplantation periods were 1, 2, 3, 4, 8, 12, and 24 weeks. As the result, we did not observe exposure of the transplant or apparent macroscopic inflammatory in all samples. Histological analysis suggested that the femoral head showed focal ossification and thinning in syngeneic transplantation. In allogeneic transplantation, slight invasion of CD3 (+) T cell and the denaturation of the cartilage were observed, suggesting immune reaction against allogeneic cartilage. In xenogeneic transplantation, slight invasion of CD3 (+) cell and CD4 (+) cell and the structure of the perichondrium-like tissue got unclear, suggesting slight immune reaction against xenogeneic cartilage. Our findings suggest that we should carefully investigate for appropriate procedure to control immune reaction against allogeneic cartilage with live chondrocyte and to maintain its cartilage feature for long time.

7.
Sci Rep ; 13(1): 2554, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781988

RESUMO

Insect galls are abnormal plant organs formed by gall-inducing insects to provide shelter and nutrients for themselves. Although insect galls are spatialized complex structures with unique shapes and functions, the molecular mechanism of the gall formation and the screening system for the gall inducing effectors remains unknown. Here, we demonstrate that an extract of a gall-inducing aphid, Schlechtendalia chinensis, induces an abnormal structure in the root-tip region of Arabidopsis seedlings. The abnormal structure is composed of stem-like cells, vascular, and protective tissues, as observed in typical insect galls. Furthermore, we confirm similarities in the gene expression profiles between the aphid-treated seedlings and the early developmental stages of Rhus javanica galls formed by S. chinensis. Based on the results, we propose a model system for analyzing the molecular mechanisms of gall formation: the Arabidopsis-based Gall-Forming Assay (Ab-GALFA). Ab-GALFA could be used not only as a model to elucidate the mechanisms underlying gall formation, but also as a bioassay system to isolate insect effector molecules of gall-induction.


Assuntos
Afídeos , Arabidopsis , Animais , Arabidopsis/genética , Insetos/genética , Afídeos/genética , Transcriptoma , Tumores de Planta/genética
8.
Curr Biol ; 33(3): 543-556.e4, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696900

RESUMO

Land plants have evolved the ability to cope with submergence. Amphibious plants are adapted to both aerial and aquatic environments through phenotypic plasticity in leaf form and function, known as heterophylly. In general, underwater leaves of amphibious plants are devoid of stomata, yet their molecular regulatory mechanisms remain elusive. Using the emerging model of the Brassicaceae amphibious species Rorippa aquatica, we lay the foundation for the molecular physiological basis of the submergence-triggered inhibition of stomatal development. A series of temperature shift experiments showed that submergence-induced inhibition of stomatal development is largely uncoupled from morphological heterophylly and likely regulated by independent pathways. Submergence-responsive transcriptome analysis revealed rapid reprogramming of gene expression, exemplified by the suppression of RaSPEECHLESS and RaMUTE within 1 h and the involvement of light and hormones in the developmental switch from terrestrial to submerged leaves. Further physiological studies place ethylene as a central regulator of the submergence-triggered inhibition of stomatal development. Surprisingly, red and blue light have opposing functions in this process: blue light promotes, whereas red light inhibits stomatal development, through influencing the ethylene pathway. Finally, jasmonic acid counteracts the inhibition of stomatal development, which can be attenuated by the red light. The actions and interactions of light and hormone pathways in regulating stomatal development in R. aquatica are different from those in the terrestrial species, Arabidopsis thaliana. Thus, our work suggests that extensive rewiring events of red light to ethylene signaling might underlie the evolutionary adaption to water environment in Brassicaceae.


Assuntos
Arabidopsis , Brassicaceae , Rorippa , Rorippa/genética , Rorippa/metabolismo , Folhas de Planta , Arabidopsis/genética , Etilenos/metabolismo , Hormônios/metabolismo , Estômatos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
New Phytol ; 237(1): 323-338, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36110047

RESUMO

Cleistogamy, in which plants can reproduce via self-fertilization within permanently closed flowers, has evolved in > 30 angiosperm lineages; however, consistent with Darwin's doubts about its existence, complete cleistogamy - the production of only cleistogamous flowers - has rarely been recognized. Thus far, the achlorophyllous orchid genus, Gastrodia, is the only known genus with several plausible completely cleistogamous species. Here, we analyzed the floral developmental transcriptomes of two recently evolved, completely cleistogamous Gastrodia species and their chasmogamous sister species to elucidate the possible changes involved in producing common cleistogamous traits. The ABBA-BABA test did not support introgression and protein sequence convergence as evolutionary mechanisms leading to cleistogamy, leaving convergence in gene expression as a plausible mechanism. Regarding transcriptomic differentiation, the two cleistogamous species had common modifications in the expression of developmental regulators, exhibiting a gene family-wide signature of convergent expression changes in MADS-box genes. Our transcriptomic pseudotime analysis revealed a prolonged juvenile state and eventual maturation, a heterochronic pattern consistent with partial neoteny, in cleistogamous flower development. These findings indicate that transcriptomic partial neoteny, arising from changes in the expression of conserved developmental regulators, might have contributed to the rapid and repeated evolution of cleistogamous flowers in Gastrodia.


Assuntos
Gastrodia , Transcriptoma , Transcriptoma/genética , Gastrodia/genética , Flores/genética , Reprodução , Fenótipo
10.
J Bone Miner Metab ; 41(1): 3-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344637

RESUMO

INTRODUCTION: Bone remodeling plays a central role in the maintenance of bone homeostasis. Our group has established an in vitro system by which the cellular events during bone remodeling can be observed longitudinally. This study used this system to quantitatively analyze osteoblasts, osteoclasts, and matrices to elucidate their temporal changes and correlations. MATERIALS AND METHODS: Osteoblasts from EGFP mice were cultured to form calcified nodules, followed by co-culture with bone marrow macrophages from Tnfrsf11aCre/+ x Ai14 mice for 3 weeks (resorption phase). Then cells were cultured with osteoblast differentiation medium for 3 weeks (formation phase). The same sites were observed weekly using 2-photon microscopy. Matrices were detected using second harmonic generation. Parameters related to matrices, osteoblasts, and osteoclasts were quantified and statistically analyzed. RESULTS: Resorption and replenishment of the matrix were observed at the same sites by 2 photon microscopy. Gross quantification revealed that matrix and osteoblast parameters decreased in the resorption phase and increased in the formation phase, while osteoclast parameters showed the opposite pattern. When one field of view was divided into 16 regions of interest (ROIs) and correlations between parameters were analyzed in each ROI, decreased and increased matrix volumes were moderately correlated. Parameters of matrices and osteoblasts, and those of matrices and osteoclasts exhibited moderate correlations, while those of osteoblasts and osteoclasts were only weakly correlated. CONCLUSION: Several correlations between cells and matrix during remodeling were demonstrated quantitatively. This system may be a powerful tool for the research of bone remodeling.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Animais , Osteoblastos , Remodelação Óssea , Osso e Ossos , Osteogênese , Diferenciação Celular
11.
JBMR Plus ; 6(11): e10689, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36398107

RESUMO

Bone nodule formation by differentiating osteoblasts is considered an in vitro model that mimics bone modeling. However, the details of osteoblast behavior and matrix production during bone nodule formation are poorly understood. Here, we present a spatiotemporal analysis system for evaluating osteoblast morphology and matrix production during bone modeling in vitro via two-photon microscopy. Using this system, a change in osteoblast morphology from cuboidal to flat was observed during the formation of mineralized nodules, and this change was quantified. Areas with high bone formation were densely populated with cuboidal osteoblasts, which were characterized by blebs, protruding structures on their cell membranes. Cuboidal osteoblasts with blebs were highly mobile, and osteoblast blebs exhibited a polar distribution. Furthermore, mimicking romosozumab treatment, when differentiated flattened osteoblasts were stimulated with BIO, a GSK3ß inhibitor, they were reactivated to acquire a cuboidal morphology with blebs on their membranes and produced more matrix than nonstimulated cells. Our analysis system is a powerful tool for evaluating the cell morphology and function of osteoblasts during bone modeling. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142311

RESUMO

Heterophylly, the phenomenon by which plants alter leaf forms to adapt to surrounding conditions, is apparent in amphibious plant species. In response to submergence, they emerge leaves with narrower blade areas. The pathway that receives the submergence signals and the mechanism regulating leaf form via cell proliferation and/or expansion systems have not yet been fully identified yet. Our anatomical study of Rorippa aquatica, an amphibious plant that exhibits heterophylly in response to various signals, showed that leaf thickness increased upon submergence; this was caused by the expansion of mesophyll cell size. Additionally, these submergence effects were inhibited under blue-light conditions. The ANGUSTIFOLIA3 (AN3)/GROWTH-REGULATING FACTOR (GRF) pathway regulating cell proliferation and cell expansion was downregulated in response to submergence; and the response was blocked under the blue-light conditions. These results suggest that submergence and light quality determine leaf cell morphology via the AN3/GRF pathway.


Assuntos
Rorippa , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Células do Mesofilo , Folhas de Planta/metabolismo , Plantas , Rorippa/metabolismo
13.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950915

RESUMO

In many flowering plants, petals initiate in alternate positions from first whorl sepals, suggesting possible signaling between sepal boundaries and petal initiation sites. PETAL LOSS (PTL) and RABBIT EARS (RBE) regulate petal initiation in Arabidopsis thaliana and their transcripts are expressed in sepal boundary and petal initiation sites, respectively, suggesting that PTL acts in a non-cell-autonomous manner. Here, we determined that cells expressing PTL and RBE fusion proteins did not overlap but were adjacent, confirming the non-cell-autonomous function of PTL. Genetic ablation of intersepal cells by expressing the diphtheria toxin-A chain gene driven by the PTL promoter resulted in flowers lacking petals, suggesting these cells are required for petal initiation. Transcriptome analysis combined with a PTL induction system revealed 42 genes that were upregulated under PTL activation, including UNUSUAL FLORAL ORGANS (UFO), which likely plays an important role in petal initiation. These findings suggest a molecular mechanism in which PTL indirectly regulates petal initiation and UFO mediates positional signaling between the sepal boundary and petal initiation sites.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo
14.
Dev Cell ; 57(5): 569-582.e6, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35148836

RESUMO

Differentiation of specialized cell types requires precise cell-cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor followed by a single symmetric division that creates paired guard cells surrounding a pore. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and commits to differentiation. However, the role of cell-cycle machineries in this transition remains unknown. We discover that the symmetric division is slower than the asymmetric division in Arabidopsis. We identify a plant-specific cyclin-dependent kinase inhibitor, SIAMESE-RELATED4 (SMR4), as a MUTE-induced molecular brake that decelerates the cell cycle. SMR4 physically and functionally associates with CYCD3;1 and extends the G1 phase of asymmetric divisions. By contrast, SMR4 fails to interact with CYCD5;1, a MUTE-induced G1 cyclin, and permits the symmetric division. Our work unravels a molecular framework of the proliferation-to-differentiation switch within the stomatal lineage and suggests that a timely proliferative cell cycle is critical for stomatal-lineage identity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Desaceleração , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas
15.
ACS Omega ; 6(40): 26707-26714, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661024

RESUMO

A frequency-domain terahertz (THz) spectrometer that uses a tunable source, called an injection-seeded THz parametric generator, was applied to the analysis of solid-state structures of ingredients in pharmaceutical tablets, and its performance on discriminating pharmaceutical products was evaluated. The spectrometer has a dynamic range of 70 dB at 2 THz and is suitable for analyzing materials such as pharmaceutical ingredients that often have characteristic absorption peaks between 0.5 and 2.5 THz. Nine ofloxacin (racemate) and four levofloxacin (levorotatory enantiomer) tablet products commercially available in Japan were used as samples. They contain 8-12 additives in addition to the API. The sample tablets were filed down to a thickness of 1.2 mm (ofloxacin tablets) and 1.6 mm (levofloxacin tablets) to obtain transmission spectra over the wide spectral range of 0.8-2.1 THz. The absorption spectra obtained from the spectrometer were preprocessed by the second derivative; then, principal component analysis (PCA) was conducted on the results. Next, quadratic discriminant analysis (DA) was conducted on the scores of the three PCA components. The accuracy of the DA for all 13 products was 96.1%. In addition to the difference in crystal forms of the active ingredient, the small differences in the formulation were clearly discriminated using the THz absorption spectra. The spectrometer combined with data analysis shows potential for applications such as identifying pharmaceutical tablets, monitoring the stability of production processes, evaluating the stability of formulations during storage, and detecting counterfeit drugs on the market.

16.
Hortic Res ; 8(1): 132, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059655

RESUMO

Since ancient times, humans have bred several plants that we rely on today. However, little is known about the divergence of most of these plants. In the present study, we investigated the divergence of Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey), a traditional leafy vegetable in Kyoto (Japan), by combining genetic analysis and a survey of ancient literature. Mibuna is considered to have been bred 200 years ago from Mizuna, another traditional leafy vegetable in Kyoto. Mibuna has simple spatulate leaves, whereas Mizuna has characteristic serrated leaves. The quantitative trait loci (QTL) and gene expression analyses suggested that the downregulation of BrTCP15 expression contributed to the change in the leaf shape from serrated to simple spatulate. Interestingly, the SNP analysis indicated that the genomic region containing the BrTCP15 locus was transferred to Mibuna by introgression. Furthermore, we conducted a survey of ancient literature to reveal the divergence of Mibuna and found that hybridization between Mizuna and a simple-leaved turnip might have occurred in the past. Indeed, the genomic analysis of multiple turnip cultivars showed that one of the cultivars, Murasakihime, has almost the same sequence in the BrTCP15 region as Mibuna. These results suggest that the hybridization between Mizuna and turnip has resulted in the establishment of Mibuna.

17.
Stem Cell Res Ther ; 12(1): 251, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926568

RESUMO

BACKGROUND: Due to its low capacity for self-repair, articular cartilage is highly susceptible to damage and deterioration, which leads to the development of degenerative joint diseases such as osteoarthritis (OA). Menstrual blood-derived mesenchymal stem/stromal cells (MenSCs) are much less characterized, as compared to bone marrow mesenchymal stem/stromal cells (BMMSCs). However, MenSCs seem an attractive alternative to classical BMMSCs due to ease of access and broader differentiation capacity. The aim of this study was to evaluate chondrogenic differentiation potential of MenSCs and BMMSCs stimulated with transforming growth factor ß (TGF-ß3) and activin A. METHODS: MenSCs (n = 6) and BMMSCs (n = 5) were isolated from different healthy donors. Expression of cell surface markers CD90, CD73, CD105, CD44, CD45, CD14, CD36, CD55, CD54, CD63, CD106, CD34, CD10, and Notch1 was analyzed by flow cytometry. Cell proliferation capacity was determined using CCK-8 proliferation kit and cell migration ability was evaluated by scratch assay. Adipogenic differentiation capacity was evaluated according to Oil-Red staining and osteogenic differentiation according to Alizarin Red staining. Chondrogenic differentiation (activin A and TGF-ß3 stimulation) was investigated in vitro and in vivo (subcutaneous scaffolds in nude BALB/c mice) by expression of chondrogenic genes (collagen type II, aggrecan), GAG assay and histologically. Activin A protein production was evaluated by ELISA during chondrogenic differentiation in monolayer culture. RESULTS: MenSCs exhibited a higher proliferation rate, as compared to BMMSCs, and a different expression profile of several cell surface markers. Activin A stimulated collagen type II gene expression and glycosaminoglycan synthesis in TGF-ß3 treated MenSCs but not in BMMSCs, both in vitro and in vivo, although the effects of TGF-ß3 alone were more pronounced in BMMSCs in vitro. CONCLUSION: These data suggest that activin A exerts differential effects on the induction of chondrogenic differentiation in MenSCs vs. BMMSCs, which implies that different mechanisms of chondrogenic regulation are activated in these cells. Following further optimization of differentiation protocols and the choice of growth factors, potentially including activin A, MenSCs may turn out to be a promising population of stem cells for the development of cell-based therapies with the capacity to stimulate cartilage repair and regeneration in OA and related osteoarticular disorders.


Assuntos
Células-Tronco Mesenquimais , Ativinas , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Condrogênese , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Osteogênese , Fenótipo , Fator de Crescimento Transformador beta3/genética
18.
Commun Biol ; 4(1): 285, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674689

RESUMO

In complex structures such as flowers, organ-organ interactions are critical for morphogenesis. The corolla plays a central role in attracting pollinators: thus, its proper development is important in nature, agriculture, and horticulture. Although the intraorgan mechanism of corolla development has been studied, the importance of organ-organ interactions during development remains unknown. Here, using corolla mutants of morning glory described approximately 200 years ago, we show that glandular secretory trichomes (GSTs) regulate floral organ interactions needed for corolla morphogenesis. Defects in GST development in perianth organs result in folding of the corolla tube, and release of mechanical stress by sepal removal restores corolla elongation. Computational modeling shows that the folding occurs because of buckling caused by mechanical stress from friction at the distal side of the corolla. Our results suggest a novel function of GSTs in regulating the physical interaction of floral organs for macroscopic morphogenesis of the corolla.


Assuntos
Flores/crescimento & desenvolvimento , Ipomoea nil/crescimento & desenvolvimento , Desenvolvimento Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Tricomas/crescimento & desenvolvimento , Simulação por Computador , Flores/genética , Fricção , Ipomoea nil/genética , Modelos Biológicos , Mutação , Plantas Geneticamente Modificadas/genética , Estresse Mecânico , Tricomas/genética
19.
Plant Direct ; 5(12): e370, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34988354

RESUMO

The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)-type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9-mediated gene editing and analyzed the responses to DNA-damaging treatments. The double-knockout (KO) sog1a sog1b plants showed resistance to γ-rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild-type (WT) and KO plants with γ-rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle-related genes were upregulated after γ-irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant-specific DDR systems had been established before the emergence of vascular plants.

20.
Tissue Eng Part A ; 27(9-10): 604-617, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32883178

RESUMO

Microtia is a congenital malformation of the auricle. The conventional therapy for microtia is reconstruction of the auricle by using the patient's own costal cartilage. Because it is invasive to harvest costal cartilages, less invasive ways for auricular reconstruction need to be established. Recent reports have indicated a new method for the production of cartilaginous particles from human induced pluripotent stem cells. To adopt this method to create an auricular-shaped regenerative cartilage, a novel scaffold with the property of a three-dimensional shape memory was created. A scaffold with a three-dimensional shape of auricular frames composed of a helix and an antihelix, which was designed to mimic an auricular framework carved from autologous costal cartilage and transplanted in auricular reconstruction, was prepared, filled with cartilaginous particles, and subcutaneously transplanted in nude rats. The auricular-shaped regenerative cartilage maintained the given shape and cartilage features in vivo for 1 year. Our findings suggest a novel approach for auricular reconstruction.


Assuntos
Microtia Congênita , Pavilhão Auricular , Células-Tronco Pluripotentes Induzidas , Procedimentos de Cirurgia Plástica , Microtia Congênita/cirurgia , Pavilhão Auricular/cirurgia , Cartilagem da Orelha , Orelha Externa/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA