Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13915, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886543

RESUMO

The potato cyst nematode Globodera rostochiensis originates from the Andean Mountain region in South America and has unintentionally been introduced to all inhabited continents. Several studies have examined the population genetic structure of this pest in various countries by using microsatellite markers. However, merging microsatellite data produced from different laboratories is challenging and can introduce uncertainty when interpreting the results. To overcome this challenge and to explore invasion routes of this pest, we have genotyped 22 G. rostochiensis populations from all continents. Within populations, the highest genetic diversity was observed in the South American populations, the European populations showed an intermediate level of genetic diversity and the remaining populations were the less diverse. This confirmed pre-existing knowledge such as a first introduction event from South America to Europe, but the less diverse populations could originate either from South America or from Europe. At the continental scale, STRUCTURE genetic clustering output indicated that North America and Asia have experienced at least two introduction events. Comparing different evolutionary scenarios, the Approximate Bayesian Computation analysis showed that Europe served as a secondary distribution centre for the invasion of G. rostochiensis into all other continents (North America, Africa, Asia and Oceania).


Assuntos
Variação Genética , Repetições de Microssatélites , Solanum tuberosum , Tylenchoidea , Animais , Europa (Continente) , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Espécies Introduzidas , Teorema de Bayes , Genótipo , Doenças das Plantas/parasitologia , Genética Populacional , América do Sul
2.
Sci Adv ; 9(11): eadf4166, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921046

RESUMO

The potato cyst nematode (PCN) causes extensive crop losses worldwide. Because the hatching of PCN requires host-derived molecules known as hatching factors (HFs), regulating HF production in host plants may help to control this harmful pest. Solanoeclepin A (SEA), isolated from potato, is the most active HF for PCN; however, its biosynthesis is completely unknown. We discovered a HF called solanoeclepin B (SEB) from potato and tomato root exudates and showed that SEB was biosynthesized in the plant and converted to SEA outside the plant by biotic agents. Moreover, we identified five SEB biosynthetic genes encoding three 2-oxoglutarate-dependent dioxygenases and two cytochrome P450 monooxygenases in tomato. Exudates from tomato hairy roots in which each of the genes was disrupted contained no SEB and had low hatch-stimulating activity for PCN. These findings will help to breed crops with a lower risk of PCN infection.


Assuntos
Nematoides , Solanum lycopersicum , Solanum tuberosum , Animais , Solanum tuberosum/genética , Raízes de Plantas/genética , Melhoramento Vegetal , Solanum lycopersicum/genética , Nematoides/fisiologia
3.
Breed Sci ; 71(3): 354-364, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34776742

RESUMO

Occurrence of pale potato cyst nematode, Globodera pallida (Stone) Behrens, was first recorded in Japan in 2015. Among several control measures, cultivation of resistant potato (Solanum tuberosum L.) varieties is the most effective in cost and environmental impact. As no G. pallida-resistant varieties have yet been developed in Japan, great emphasis is being placed on screening of germplasm possessing the resistance and development of the resistant varieties. In this study, we first improved previously reported DNA markers linked to the G. pallida resistance loci (GpaIVs adg and Gpa5) and then used these to screen more than 1,000 germplasms to select several candidate germplasms with resistance. We performed inoculation testing on the selected candidates and identified several resistant germplasms to the Japanese G. pallida population. Furthermore, we developed a simultaneous detection method combining three DNA markers linked to G. pallida and Globodera rostochiensis (Wollenweber) Behrens resistance loci. We validated the ability of C237-I marker to select resistant allele of GpaIVs adg and predict the presence of resistance in a Japanese breeding population. Resistant germplasms identified in this study could potentially be used to develop G. pallida-resistant varieties. The marker evaluation methods developed in this study will contribute to the efficient development of resistant varieties.

4.
Plant Biotechnol (Tokyo) ; 37(3): 319-325, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088195

RESUMO

Cyst nematodes (Globodera spp. and Heterodera spp.) are highly evolved sedentary endoparasites that are considered as harmful pests worldwide. The hatching of the dormant eggs of cyst nematodes occurs in response to hatching factors (HFs), which are compounds that are secreted from the roots of host plants. Solanoeclepin A (SEA), a triterpene compound, has been isolated as HF for potato cyst nematode (PCN) eggs, whereas other compounds, such as steroidal glycoalkaloids (SGAs), are also known to show weak hatching stimulation (HS) activity. However, the structures of both compounds are different and the HF-mediated hatching mechanism is still largely unknown. In the present study, we observed specific hatching of PCN eggs stimulated by the hairy root culture media of potato and tomato, revealing the biosynthesis and secretion of HFs. SGAs, such as α-solanine, α-chaconine, and α-tomatine, showed significant HS activity, despite being remarkably less activities than that of SEA. Then, we evaluated the contribution of SGAs on the HS activities of the hairy root culture media. The estimated SGAs content in the hairy root culture media were low and nonconcordant with the HS activity of those, suggesting that the HS activity of SGAs did not contribute much. The analysis of structure-activity relationship revealed that the structural requirements of the HS activity of SGAs are dependent on the sugar moieties attached at the C3-hydoroxyl group and the alkaloid property of their aglycones. The stereochemistry in the EF rings of their aglycone also affected the strength of the HS activity.

5.
J Chem Ecol ; 43(10): 966-970, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28980108

RESUMO

In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid's CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.


Assuntos
Alcanos/metabolismo , Formigas/fisiologia , Afídeos/fisiologia , Simbiose , Agressão , Alcanos/análise , Comunicação Animal , Animais , Afídeos/química , Feminino , Metilação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA