Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(18): 4440-4447, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686937

RESUMO

We utilized linear and 2D infrared spectroscopy to analyze the carbonyl stretching modes of small esters in different solvents. Particularly noteworthy were the distinct carbonyl spectral line shapes in aqueous solutions, prompting our investigation of the underlying factors responsible for these differences. Through our experimental and theoretical calculations, we identified the presence of the hydrogen-bond-induced Fermi resonance as the primary contributor to the varied line shapes of small esters in aqueous solutions. Furthermore, our findings revealed that the skeletal deformation mode plays a crucial role in the Fermi resonance for all small esters. Specifically, the first overtone band of the skeletal deformation mode intensifies when hydrogen bonds form with the carbonyl group of esters, whereas such coupling is rare in aprotic organic solvents. These spectral insights carry significant implications for the utilization of esters as infrared probes in both biological and chemical systems.

2.
Biochemistry ; 62(2): 451-461, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36573496

RESUMO

The acid-base behavior of amino acids plays critical roles in several biochemical processes. Depending on the interactions with the protein environment, the pKa values of these amino acids shift from their respective solution values. As the side chains interact with the polypeptide backbone, a pH-induced change in the protonation state of aspartic and glutamic acids might significantly influence the structure and stability of a protein. In this work, we have combined two-dimensional infrared spectroscopy and molecular dynamics simulations to elucidate the pH-induced structural changes in an antimicrobial enzyme, lysozyme, over a wide range of pH. Simultaneous measurements of the carbonyl signals arising from the backbone and the acidic side chains provide detailed information about the pH dependence of the local and global structural features. An excellent agreement between the experimental and the computational results allowed us to obtain a residue-specific molecular understanding. Although lysozyme retains the helical structure for the entire pH range, one distinct loop region (residues 65-75) undergoes local structural deformation at low pH. Interestingly, combining our experiments and simulations, we have identified the aspartic acid residues in lysozyme, which are influenced the most/least by pH modulation.


Assuntos
Muramidase , Proteínas , Concentração de Íons de Hidrogênio , Proteínas/química , Aminoácidos , Ácido Aspártico/química
3.
J Phys Chem B ; 126(1): 239-248, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34961310

RESUMO

Ionic electrolytes are known to form various complexes which exist in dynamic equilibrium in a low dielectric medium. However, structural characterization of these complexes has always posed a great challenge to the scientific community. An additional challenge is the estimation of the dynamic association-dissociation time scales (lifetime of the complexes), which are key to the fundamental understanding of ion transport. In this work, we have used a combination of infrared absorption spectroscopy, two-dimensional infrared spectroscopy, molecular dynamics simulations, and density functional theory calculations to characterize the various ion complexes formed by the thiocyanate-based ionic electrolytes as a function of different cations in a low dielectric medium. Our results demonstrate that thiocyanate is an excellent vibrational reporter of the heterogeneous ion complexes undergoing association-dissociation dynamics. We find that the ionic electrolytes exist as contact ion pairs, dimers, and clusters in a low dielectric medium. The relative ratios of the various ion complexes are sensitive to the cations. In addition to the interactions between the thiocyanate anion and the countercation, the solute-solvent interactions drive the dynamic equilibrium. We have estimated the association-dissociation dynamics time scales from two-dimensional infrared spectroscopy. The exchange time scale involving the cluster is faster than that between a dimer and an ion pair. Moreover, we find that the dynamic equilibrium between the cluster and another ion complex is correlated to the solvent fluctuations.

4.
J Phys Chem Lett ; 12(36): 8784-8789, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34491763

RESUMO

Disruption of the deep eutectic solvent (DES) nanostructure around the dissolved solute upon addition of water is investigated by polarization-selective two-dimensional infrared spectroscopy and molecular dynamics simulations. The heterogeneous DES nanostructure around the solute is partially retained up to 41 wt % of added water, although water molecules are gradually incorporated in the solute's solvation shell even at lower hydration levels. Beyond 41 wt %, the solute is observed to be preferentially solvated by water. This composition denotes the upper hydration limit of the deep eutectic solvent above which the solute senses an aqueous solvation environment. Interestingly, our results indicate that the transition from a deep eutectic solvation environment to an aqueous one around the dissolved solute can happen at a hydration level lower than that reported for the "water in DES" to "DES in water" transition.

5.
Org Lett ; 23(13): 4949-4954, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34060858

RESUMO

An unusual Namide···H-Namide hydrogen bond (HB) was previously proposed to stabilize the azapeptide ß-turns. Herein we provide experimental evidence for the Namide···H-Namide HB and show that this HB endows a stabilization of 1-3 kcal·mol-1 and enforces the trans-cis-trans (t-c-t) and cis-cis-trans (c-c-t) amide bond conformations in azapeptides and N-methyl-azapeptides, respectively. Our results indicate that these Namide···H-Namide HBs can have stabilizing contributions even in short azapeptides that cannot fold to form ß-turns.

6.
Org Lett ; 23(18): 7003-7007, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33973795

RESUMO

1,2-Dibenzoyl-1-tert-butylhydrazine (RH-5849) and related N-alkyl-N,N'-diacylhydrazines are environmentally benign insect growth regulators. Herein, we show that an unusual nN(amide) → π*Ar interaction mediated by a hydrazide amide nitrogen atom plays a crucial role in stabilizing their biologically active trans-cis (t-c) rotameric conformations. We provide NMR and IR spectroscopic evidence for the presence of these interactions, which is also supported by X-ray crystallographic and computational studies.

7.
J Phys Chem B ; 125(11): 2871-2878, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33728913

RESUMO

Warfarin is a potent anti-coagulant drug and is on the World Health Organization's List of Essential Medicines. Additionally, it displays fluorescence enhancement upon binding to human serum albumin, making warfarin a prototype fluorescent probe in biology. Despite its biological significance, the current structural assignment of warfarin in aqueous solution is based on indirect evidence in organic solvents. Warfarin is known to exist in different isomeric forms-open-chain, hemiketal, and anionic forms-based on the solvent and pH. Moreover, warfarin displays a dual absorption feature in several solvents, which has been employed to study the ring-chain isomerism between its open-chain and hemiketal isomers. In this study, our pH-dependent experiments on warfarin and structurally constrained warfarin derivatives in aqueous solution demonstrate that the structural assignment of warfarin solely on the basis of its absorption spectrum is erroneous. Using a combination of steady-state and time-resolved spectroscopic experiments, along with quantum chemical calculations, we assign the observed dual absorption to two distinct π → π* transitions in the 4-hydroxycoumarin moiety of warfarin. Furthermore, we unambiguously identify the isomeric form of warfarin that binds to human serum albumin in aqueous buffer.


Assuntos
Varfarina , Água , Humanos , Isomerismo , Solventes , Espectrometria de Fluorescência , Análise Espectral
8.
J Phys Chem B ; 123(44): 9355-9363, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31609117

RESUMO

Deep eutectic solvents (DESs) have gained popularity in recent years as an environmentally benign, inexpensive alternative to organic solvents for diverse applications in chemistry and biology. Among them, alcohol-based DESs serve as useful media in various applications due to their significantly low viscosity as compared to other DESs. Despite their importance as media, little is known how their solvation dynamics change as a function of the hydrocarbon chain length of the alcohol constituent. In order to obtain insights into the chain-length dependence of the solvation dynamics, we have performed two-dimensional infrared spectroscopy on three alcohol-based DESs by systematically varying the hydrocarbon chain length. The results reveal that the solvent dynamics slows down monotonically with an increase in the chain length. This increase in the dynamic timescales also shows a strong correlation with the concomitant increase in the viscosity of DESs. In addition, we have performed molecular dynamics simulations to compare with the experimental results, thereby testing the capacity of simulations to determine the amplitudes and timescales of the structural fluctuations on fast timescales under thermal equilibrium conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA