Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 241(4): 727-738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38036661

RESUMO

RATIONALE: In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES: We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS: We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS: Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.


Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Haplótipos , Interleucina-10 , Antimaníacos/uso terapêutico , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico
2.
Acta Neurobiol Exp (Wars) ; 82(3): 245-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214707

RESUMO

Lithium is a mood stabilizer widely used in the pharmacotherapy of bipolar disorder and treatment­resistant depression. Taking into account dysregulated inflammatory activity in depression and the immunomodulatory role of lithium, we hypothesized that genes associated with inflammatory responses may be potential biomarkers of lithium action. We aimed to compare gene expression changes between the brain and the periphery after chronic lithium administration in an animal model of depression. Depressive behavior was induced by chronic mild stress protocol for 4 weeks. After 2 weeks, rats started to receive lithium (study group) or water (reference group). The control group were rats not exposed to stress. Amygdala, hippocampus, frontal cortex and peripheral blood were analyzed using whole transcriptome expression microarrays. Changes were confirmed with qPCR and ELISA assay. After 2 weeks of lithium administration, we observed significant changes in gene expression between amygdala and peripheral blood. Logistic regression analysis determined Alox15 expression as a predictor of lithium status, as its expression was tissue­specific and increased in amygdala and decreased in blood. Analysis of serum ALOX15 protein revealed its upregulation after two­week lithium administration. Our study suggests that lithium may have therapeutic potential in depressive behaviors. These results indicate immunomodulatory effect of lithium and that Alox15 may be a new potential marker of chronic lithium treatment.


Assuntos
Depressão , Lítio , Tonsila do Cerebelo , Animais , Biomarcadores , Depressão/tratamento farmacológico , Depressão/metabolismo , Lítio/farmacologia , Lítio/uso terapêutico , Compostos de Lítio/farmacologia , Projetos Piloto , Ratos , Água
3.
Exp Ther Med ; 21(5): 482, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33790991

RESUMO

Knowledge of the tumor microenvironment is crucial for developing an effective strategy to treat cancer. Recently, anticancer therapies targeting macrophages have been intensively investigated. Increased understanding of the importance of the tumor microenvironment has led to the development of three-dimensional (3D) in vitro tumor models. However, established techniques for studying tumor-associated macrophages in vitro are limited. We have previously characterized a 3D breast cancer model consisting of breast cancer cells and fibroblasts cocultured on a silk scaffold. In the present study, the influence of this model on macrophage polarization was investigated. The expression of macrophage markers was studied using reverse transcription-quantitative PCR and flow cytometry. The activity of nitric oxide synthase and arginase in macrophages was also measured. The presented model appeared to induce the polarization of macrophages towards an M2 phenotype. In this 3D tumor model, the in vivo behavior of macrophages could be reproduced. This model may be beneficial for the study of tumor biology and for screening drugs.

4.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546417

RESUMO

Mood disorders are chronic, recurrent diseases characterized by changes in mood and emotions. The most common are major depressive disorder (MDD) and bipolar disorder (BD). Molecular biology studies have indicated an involvement of the immune system in the pathogenesis of mood disorders, and showed their correlation with altered levels of inflammatory markers and energy metabolism. Previous reports, including meta-analyses, also suggested the role of microglia activation in the M1 polarized macrophages, reflecting the pro-inflammatory phenotype. Lithium is an effective mood stabilizer used to treat both manic and depressive episodes in bipolar disorder, and as an augmentation of the antidepressant treatment of depression with a multidimensional mode of action. This review aims to summarize the molecular studies regarding inflammation, microglia activation and energy metabolism changes in mood disorders. We also aimed to outline the impact of lithium on these changes and discuss its immunomodulatory effect in mood disorders.


Assuntos
Suscetibilidade a Doenças , Imunomodulação/efeitos dos fármacos , Inflamação/complicações , Lítio/farmacologia , Transtornos do Humor/etiologia , Animais , Biomarcadores , Citocinas/metabolismo , Gerenciamento Clínico , Metabolismo Energético/efeitos dos fármacos , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lítio/uso terapêutico , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498969

RESUMO

Lithium has been the most important mood stabilizer used for the treatment of bipolar disorder and prophylaxis of manic and depressive episodes. Despite long use in clinical practice, the exact molecular mechanisms of lithium are still not well identified. Previous experimental studies produced inconsistent results due to different duration of lithium treatment and using animals without manic-like or depressive-like symptoms. Therefore, we aimed to analyze the gene expression profile in three brain regions (amygdala, frontal cortex and hippocampus) in the rat model of mania and depression during chronic lithium administration (2 and 4 weeks). Behavioral changes were verified by the forced swim test, open field test and elevated maze test. After the experiment, nucleic acid was extracted from the frontal cortex, hippocampus and amygdala. Gene expression profile was done using SurePrint G3 Rat Gene Expression whole transcriptome microarrays. Data were analyzed using Gene Spring 14.9 software. We found that chronic lithium treatment significantly influenced gene expression profile in both mania and depression models. In manic rats, chronic lithium treatment significantly influenced the expression of the genes enriched in olfactory and taste transduction pathway and long non-coding RNAs in all three brain regions. We report here for the first time that genes regulating olfactory and taste receptor pathways and long non-coding RNAs may be targeted by chronic lithium treatment in the animal model of mania.


Assuntos
Encéfalo/metabolismo , Depressão/tratamento farmacológico , Lítio/farmacologia , Mania/tratamento farmacológico , Transcriptoma , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Depressão/genética , Modelos Animais de Doenças , Lítio/uso terapêutico , Masculino , Mania/genética , Ratos , Ratos Wistar
6.
World J Biol Psychiatry ; 22(2): 149-160, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32400287

RESUMO

OBJECTIVES: In mood disorders chronic stress contributes to decreased glucocorticoid receptor signalling in the brain and resistance in the periphery. We hypothesised that aberrant glucocorticoid receptor function may result from genetic predisposition and that decreased GR signalling in the brain correlates with the expression of genes regulating GR complex formation. METHODS: We performed the association analysis of 698 patients: 490 patients with bipolar disorder and 208 patients with major depressive disorder and 564 control subjects. We genotyped 11 variants using TaqMan assays. Gene expression in the brain tissue was done in male Wistar rats after chronic mild stress protocol. The SRSF5 serum concentration was performed using ELISA. Data were analysed in Statistica and GraphPad. RESULTS: We found an association of STIP1 and SRSF5 variants with major depressive disorder and BAG1 variant with bipolar disorder. Gene expression analysis in a rat model of depression confirmed significant changes in the expression of SRSF5, BAG1, and FKBP4 in the brain. For SRSF5, we observed significantly increased expression in the serum of depressed females and male rats exposed to chronic stress. CONCLUSIONS: Our results indicate the involvement of genes associated with GR function, SRSF5, BAG1, and FKBP4 with susceptibility to mood disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Receptores de Glucocorticoides , Animais , Transtorno Bipolar/genética , Proteínas de Ligação a DNA/genética , Transtorno Depressivo Maior/genética , Feminino , Proteínas de Choque Térmico/genética , Humanos , Masculino , Transtornos do Humor , Ratos , Ratos Wistar , Receptores de Glucocorticoides/genética , Fatores de Processamento de Serina-Arginina/genética , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA