Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 21: 547-565, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185749

RESUMO

The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.

2.
Rev Sci Instrum ; 92(8): 084105, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470440

RESUMO

Laboratory and experimental scale manufacturing processes are limited by human error (e.g., poor control over motion and personal subjectivity), especially under fatiguing conditions involving precise, repetitive operations, incurring compounding errors. Commercial layer-by-layer (LbL) automation devices are prohibitively high-priced (especially for academic institutions) with limited flexibility in form factor and potentially software-associated constraints/limitations. In this work, a novel automated multi-beaker dip coater was fabricated to facilitate nano cerium oxide/polymer coatings via an LbL dip coating process and the synthesis of nano ceria films via a novel successive ionic layer adsorption and reaction method on a glass substrate. Automation of tasks, such as those mediating the detailed procedures, is essential in producing highly reproducible, consistent products/materials as well as in reducing the time commitments for laboratory researchers. Herein, we detail the construction of a relatively large, yet inexpensive, LbL coating instrument that can operate over 90 cm in the horizontal axis, allowing, for example, up to eight 200 ml beakers with accompanying stir plates. The instrument is operated by simple "off-the-shelf" electronics to control the path and timing of the samples with open-source software while providing precision at ±0.01 mm. Furthermore, 3D-printed components were used to maximize the number of substrates that could be coated simultaneously, further improving the sample production rate and reducing waste. Further possibilities for automation beyond the detailed device are provided and discussed, including software interfaces, physical control methods, and sensors for data collection/analysis or for triggers of automated tasks.

3.
ACS Nano ; 15(9): 14544-14556, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436866

RESUMO

The COVID19 pandemic has brought global attention to the threat of emerging viruses and to antiviral therapies, in general. In particular, the high transmissibility and infectivity of respiratory viruses have been brought to the general public's attention, along with the need for highly effective antiviral and disinfectant materials/products. This study has developed two distinct silver-modified formulations of redox-active nanoscale cerium oxide (AgCNP1 and AgCNP2). The formulations show specific antiviral activities toward tested OC43 coronavirus and RV14 rhinovirus pathogens, with materials characterization demonstrating a chemically stable character for silver nanophases on ceria particles and significant differences in Ce3+/Ce4+ redox state ratio (25.8 and 53.7% Ce3+ for AgCNP1 & 2, respectively). In situ electrochemical studies further highlight differences in formulation-specific viral inactivation and suggest specific modes of action. Altogether, the results from this study support the utility of AgCNP formulations as high stability, high efficacy materials for use against clinically relevant virus species.


Assuntos
COVID-19 , Cério , Humanos , Rhinovirus , SARS-CoV-2
4.
Mater Sci Eng C Mater Biol Appl ; 126: 112145, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082956

RESUMO

Increased bone loss and risk of fracture are two of the main challenges for cancer patients who undergo ionizing radiation (IR) therapy. This decline in bone quality is in part, caused by the excessive and sustained release of reactive oxygen species (ROS). Cerium oxide nanoparticles (CeONPs) have proven antioxidant and regenerative properties and the purpose of this study was to investigate the effect of CeONPs in reducing IR-induced functional damage in human bone marrow-derived mesenchymal stromal cells (hBMSCs). hBMSCs were supplemented with CeONPs at a concentration of either 1 or 10 µg/mL 24 h prior to exposure to a single 7 Gy irradiation dose. ROS levels, cellular proliferation, morphology, senescence, DNA damage, p53 expression and autophagy were evaluated as well as alkaline phosphatase, osteogenic protein gene expression and bone matrix deposition following osteogenic differentiation. Results showed that supplementation of CeONPs at a concentration of 1 µg/mL reduced cell senescence and significantly augmented cell autophagy (p = 0.01), osteogenesis and bone matrix deposition >2-fold (p = 0.0001) while under normal, non-irradiated culture conditions. Following irradiation, functional damage was attenuated and CeONPs at both 1 or 10 µg/mL significantly reduced ROS levels (p = 0.05 and 0.001 respectively), DNA damage by >4-fold (p < 0.05) while increasing autophagy >3.5-fold and bone matrix deposition 5-fold (p = 0.0001 in both groups). When supplemented with 10 µg/mL, p53 expression increased 3.5-fold (p < 0.05). We conclude that cellular uptake of CeONPs offered a significant, multifunctional and protective effect against IR-induced cellular damage while also augmenting osteogenic differentiation and subsequent new bone deposition. The use of CeONPs holds promise as a novel multifunctional therapeutic strategy for irradiation-induced bone loss.


Assuntos
Cério , Nanopartículas , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Cério/farmacologia , Humanos , Osteogênese
5.
J Biomed Mater Res A ; 109(12): 2570-2579, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34173708

RESUMO

To avoid aging and ultraviolet mediated skin disease the cell repair machinery must work properly. Neutrophils, also known as polymorphonuclear leukocytes, are the first and most abundant cell types which infiltrate sites of irradiation and play an important role in restoring the microenvironment homeostasis. However, the infiltration of neutrophils in ultraviolet-B (UV-B) irradiated skin might also contribute to the pathophysiology of skin disease. The polymorphonuclear leukocytes activation induced by UV-B exposure may lead to prolonged, sustained NADPH oxidase activation followed by an increase in reactive oxygen species (ROS) production. Our previous work showed that cerium oxide nanoparticles can protect L929 fibroblasts from ultraviolet-B induced damage. Herein, we further our investigation of engineered cerium oxide nanoparticles (CNP) in conferring radiation protection specifically in modulation of neutrophils' oxidative response under low dose of UV-B radiation. Our data showed that even low doses of UV-B radiation activate neutrophils' oxidative response and that the antioxidant, ROS-sensitive redox activities of engineered CNPs are able to inhibit the effects of NADPH oxidase activation while conferring catalase and superoxide dismutase mimetic activity. Further, our investigations revealed similar levels of total ROS scavenging for both CNP formulations, despite substantial differences in cerium redox states and specific enzyme-mimetic reaction activity. We therefore determine that CNP activity in mitigating the effects of neutrophils' oxidative response, through the decrease of ROS and of cell damage such as chromatin condensation, suggests potential utility as a radio-protectant/therapeutic against UV-B damage.


Assuntos
Cério/química , Cério/farmacologia , Nanoestruturas/química , Neutrófilos/metabolismo , Neutrófilos/efeitos da radiação , Protetores contra Radiação/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Engenharia Tecidual , Animais , Catalase/metabolismo , Linhagem Celular , Ativação Enzimática , Fibroblastos/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Oxirredução , Superóxido Dismutase/metabolismo , Raios Ultravioleta
6.
Mater Sci Eng C Mater Biol Appl ; 124: 112041, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947541

RESUMO

Oxidative stress increases bone loss and limits repair, in part, through immunoregulation and the formation and maintenance of low-grade chronic inflammation. The aim of this study was to investigate the effect of cerium oxide nanoparticles (CeONPs) on (i) macrophage phenotype and cytokine expression under normal and simulated acute and chronic inflammatory conditions and, (ii) human mesenchymal stem cell (hBMSCs) proliferation, osteoinduction and osteogenic differentiation. Spherical particles composed of 60% Ce3+ with a hydrodynamic size of ~35 nm and surface charge of 25.4 mV were internalized within cells. Under both acute and chronic conditions, inducible nitric oxide synthase (iNOS) activity decreased with a significant reduction seen in the 1 and 10 µg/mL groups (p < 0.001). A dose dependent and significant increase in anti-inflammatory cytokine gene expression was observed in all CeONP groups under chronic inflammatory condition. No increase in alkaline phosphatase (ALP) activity or mineral deposits were measured following hBMSCs cultured without osteogenic media in any of the CeONP groups, however, a significant increase in osteogenic-related gene expression, ALP activity and bone mineral deposits was measured when supplemented with both CeONPs and osteogenic media. CeONP activity was multifaceted and exhibited low toxicity. A therapeutic dose of 1 µg/mL delivered a disparate but protective effect when under both acute and chronic inflammatory conditions while at the same dose, potentiated osteogenesis.


Assuntos
Cério , Células-Tronco Mesenquimais , Nanopartículas , Diferenciação Celular , Células Cultivadas , Cério/farmacologia , Humanos , Inflamação/tratamento farmacológico , Osteogênese
7.
PLoS Negl Trop Dis ; 14(9): e0008654, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976503

RESUMO

Effectively controlling vector mosquito populations while avoiding the development of resistance remains a prevalent and increasing obstacle to integrated vector management. Although, metallic nanoparticles have previously shown promise in controlling larval populations via mechanisms which are less likely to spur resistance, the impacts of such particles on life history traits and fecundity of mosquitoes are understudied. Herein, we investigate the chemically well-defined cerium oxide nanoparticles (CNPs) and silver-doped nanoceria (AgCNPs) for larvicidal potential and effects on life history traits and fecundity of Aedes (Ae.) aegypti mosquitoes. When 3rd instar larvae were exposed to nanoceria in absence of larval food, the mortality count disclosed significant activity of AgCNPs over CNPs (57.8±3.68% and 17.2±2.81% lethality, respectively) and a comparable activity to Ag+ controls (62.8±3.60% lethality). The surviving larvae showed altered life history traits (e.g., reduced egg hatch proportion and varied sex ratios), indicating activities of these nanoceria beyond just that of a larvicide. In a separate set of experiments, impacts on oocyte growth and egg generation resulting from nanoceria-laced blood meals were studied using confocal fluorescence microscopy revealing oocytes growth-arrest at 16-24h after feeding with AgCNP-blood meals in some mosquitoes, thereby significantly reducing average egg clutch. AgCNPs caused ~60% mortality in 3rd instar larvae when larval food was absent, while CNPs yielded only ~20% mortality which contrasts with a previous report on green-synthesized nanoceria and highlights the level of detail required to accurately report and interpret such studies. Additionally, AgCNPs are estimated to contain much less silver (0.22 parts per billion, ppb) than the amount of Ag+ needed to achieve comparable larvicidal activity (2.7 parts per million, ppm), potentially making these nanoceria ecofriendly. Finally, this work is the first study to demonstrate the until-now-unappreciated impacts of nanoceria on life history traits and interference with mosquito egg development.


Assuntos
Aedes/efeitos dos fármacos , Cério/farmacologia , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Características de História de Vida , Animais , Feminino , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Tamanho da Partícula , Prata/farmacologia
8.
Sci Rep ; 10(1): 3583, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107393

RESUMO

A room temperature amorphous ferromagnetic oxide semiconductor can substantially reduce the cost and complexity associated with utilizing crystalline materials for spintronic devices. We report a new material (Fe0.66Dy0.24Tb0.1)3O7-x (FDTO), which shows semiconducting behavior with reasonable electrical conductivity (~500 mOhm-cm), an optical band-gap (2.4 eV), and a large enough magnetic moment (~200 emu/cc), all of which can be tuned by varying the oxygen content during deposition. Magnetoelectric devices were made by integrating ultrathin FDTO with multiferroic BiFeO3. A strong enhancement in the magnetic coercive field of FDTO grown on BiFeO3 validated a large exchange coupling between them. Additionally, FDTO served as an excellent top electrode for ferroelectric switching in BiFeO3 with no sign of degradation after ~1010 switching cycles. RT magneto-electric coupling was demonstrated by modulating the resistance states of spin-valve structures using electric fields.

9.
Sci Rep ; 5: 15613, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26489858

RESUMO

Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce(3+) sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce(3+) sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cério/toxicidade , Nanopartículas/toxicidade , Antioxidantes/efeitos adversos , Cério/química , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície/efeitos dos fármacos
10.
Nanoscale ; 7(12): 5169-77, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25655364

RESUMO

Single-crystalline ceria nanorods were fabricated using a hydrothermal process and annealed at 325 °C-800 °C. As-synthesized CeO2 nanorods contain a high concentration of defects, such as oxygen vacancies and high lattice strains. Annealing resulted in an improved lattice crystalline quality along with the evolution of novel cavity-shaped defects in the nanorods with polyhedral morphologies and bound by e.g. {111} and {100} (internal) surfaces, confirmed for both air (ex situ) and vacuum (in situ) heating. We postulate that the cavities evolve via agglomeration of vacancies within the as-synthesized nanorods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA