Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Oxid Med Cell Longev ; 2021: 8635088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970419

RESUMO

Oxidative stress is a major risk factor for Alzheimer's disease (AD), which is characterized by brain atrophy, amyloid plaques, neurofibrillary tangles, and loss of neurons. 8-Oxoguanine, a major oxidatively generated nucleobase highly accumulated in the AD brain, is known to cause neurodegeneration. In mammalian cells, several enzymes play essential roles in minimizing the 8-oxoguanine accumulation in DNA. MUTYH with adenine DNA glycosylase activity excises adenine inserted opposite 8-oxoguanine in DNA. MUTYH is reported to actively contribute to the neurodegenerative process in Parkinson and Huntington diseases and some mouse models of neurodegenerative diseases by accelerating neuronal dysfunction and microgliosis under oxidative conditions; however, whether or not MUTYH is involved in AD pathogenesis remains unclear. In the present study, we examined the contribution of MUTYH to the AD pathogenesis. Using postmortem human brains, we showed that various types of MUTYH transcripts and proteins are expressed in most hippocampal neurons and glia in both non-AD and AD brains. We further introduced MUTYH deficiency into App NL-G-F/NL-G-F knock-in AD model mice, which produce humanized toxic amyloid-ß without the overexpression of APP protein, and investigated the effects of MUTYH deficiency on the behavior, pathology, gene expression, and neurogenesis. MUTYH deficiency improved memory impairment in App NL-G-F/NL-G-F mice, accompanied by reduced microgliosis. Gene expression profiling strongly suggested that MUTYH is involved in the microglial response pathways under AD pathology and contributes to the phagocytic activity of disease-associated microglia. We also found that MUTYH deficiency ameliorates impaired neurogenesis in the hippocampus, thus improving memory impairment. In conclusion, we propose that MUTYH, which is expressed in the hippocampus of AD patients as well as non-AD subjects, actively contributes to memory impairment by inducing microgliosis with poor neurogenesis in the preclinical AD phase and that MUTYH is a novel therapeutic target for AD, as its deficiency is highly beneficial for ameliorating AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , DNA Glicosilases/metabolismo , Microglia/metabolismo , Neurogênese/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Fatores de Risco
4.
Aging Cell ; 20(8): e13429, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245097

RESUMO

Insulin resistance and diabetes mellitus are major risk factors for Alzheimer's disease (AD), and studies with transgenic mouse models of AD have provided supportive evidence with some controversies. To overcome potential artifacts derived from transgenes, we used a knock-in mouse model, AppNL-F/NL-F , which accumulates Aß plaques from 6 months of age and shows mild cognitive impairment at 18 months of age, without the overproduction of APP. In the present study, 6-month-old male AppNL-F/NL-F and wild-type mice were fed a regular or high-fat diet (HFD) for 12 months. HFD treatment caused obesity and impaired glucose tolerance (i.e., T2DM conditions) in both wild-type and AppNL-F/NL-F mice, but only the latter animals exhibited an impaired cognitive function accompanied by marked increases in both Aß deposition and microgliosis as well as insulin resistance in the hippocampus. Furthermore, HFD-fed AppNL-F/NL-F mice exhibited a significant decrease in volume of the granule cell layer in the dentate gyrus and an increased accumulation of 8-oxoguanine, an oxidized guanine base, in the nuclei of granule cells. Gene expression profiling by microarrays revealed that the populations of the cell types in hippocampus were not significantly different between the two mouse lines, regardless of the diet. In addition, HFD treatment decreased the expression of the Aß binding protein transthyretin (TTR) in AppNL-F/NL-F mice, suggesting that the depletion of TTR underlies the increased Aß deposition in the hippocampus of HFD-fed AppNL-F/NL-F mice.


Assuntos
Doença de Alzheimer/genética , Técnicas de Introdução de Genes/métodos , Hipocampo/fisiopatologia , Doença de Alzheimer/fisiopatologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
5.
Sci Rep ; 11(1): 5819, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758207

RESUMO

8-Oxoguanine (8-oxoG), a major oxidative base lesion, is highly accumulated in Alzheimer's disease (AD) brains during the pathogenic process. MTH1 hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, thereby avoiding 8-oxo-dG incorporation into DNA. 8-OxoG DNA glycosylase-1 (OGG1) excises 8-oxoG paired with cytosine in DNA, thereby minimizing 8-oxoG accumulation in DNA. Levels of MTH1 and OGG1 are significantly reduced in the brains of sporadic AD cases. To understand how 8-oxoG accumulation in the genome is involved in AD pathogenesis, we established an AD mouse model with knockout of Mth1 and Ogg1 genes in a 3xTg-AD background. MTH1 and OGG1 deficiency increased 8-oxoG accumulation in nuclear and, to a lesser extent, mitochondrial genomes, causing microglial activation and neuronal loss with impaired cognitive function at 4-5 months of age. Furthermore, minocycline, which inhibits microglial activation and reduces neuroinflammation, markedly decreased the nuclear accumulation of 8-oxoG in microglia, and inhibited microgliosis and neuronal loss. Gene expression profiling revealed that MTH1 and OGG1 efficiently suppress progression of AD by inducing various protective genes against AD pathogenesis initiated by Aß/Tau accumulation in 3xTg-AD brain. Our findings indicate that efficient suppression of 8-oxoG accumulation in brain genomes is a new approach for prevention and treatment of AD.


Assuntos
Doença de Alzheimer/genética , DNA Glicosilases/genética , Guanina/análogos & derivados , Monoéster Fosfórico Hidrolases/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Progressão da Doença , Perfilação da Expressão Gênica , Guanina/metabolismo , Guanina/toxicidade , Humanos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo/efeitos dos fármacos
6.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208550

RESUMO

Inosine triphosphate pyrophosphatase (ITPA) hydrolyzes inosine triphosphate (ITP) and other deaminated purine nucleotides to the corresponding nucleoside monophosphates. In humans, ITPA deficiency causes severe encephalopathy with epileptic seizure, microcephaly, and developmental retardation. In this study, we established neural stem cell-specific Itpa-conditional KO mice (Itpa-cKO mice) to clarify the effects of ITPA deficiency on the neural system. The Itpa-cKO mice showed growth retardation and died within 3 weeks of birth. We did not observe any microcephaly in the Itpa-cKO mice, although the female Itpa-cKO mice did show adrenal hypoplasia. The Itpa-cKO mice showed limb-clasping upon tail suspension and spontaneous and/or audiogenic seizure. Whole-cell patch-clamp recordings from entorhinal cortex neurons in brain slices revealed a depolarized resting membrane potential, increased firing, and frequent spontaneous miniature excitatory postsynaptic current and miniature inhibitory postsynaptic current in the Itpa-cKO mice compared with ITPA-proficient controls. Accumulated ITP or its metabolites, such as cyclic inosine monophosphates, or RNA containing inosines may cause membrane depolarization and hyperexcitability in neurons and induce the phenotype of ITPA-deficient mice, including seizure.


Assuntos
Epilepsia/patologia , Células-Tronco Neurais/metabolismo , Neurônios/patologia , Pirofosfatases/fisiologia , Animais , Epilepsia/etiologia , Epilepsia/metabolismo , Feminino , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Neurônios/metabolismo
7.
Free Radic Res ; 54(4): 280-292, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32326776

RESUMO

Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting the role of noise exposure as an independent cardiovascular risk factor. We characterised the underlying molecular mechanisms leading to noise-dependent adverse effects on the vasculature and myocardium in an animal model of aircraft noise exposure and identified oxidative stress and inflammation as central players in mediating vascular and cardiac dysfunction. Here, we studied the impact of noise-induced oxidative DNA damage on vascular function in DNA-repair deficient 8-oxoguanine glycosylase knockout (Ogg1-/-) mice.Methods and results: Noise exposure (peak sound levels of 85 and mean sound level of 72 dB(A) applied for 4d) caused oxidative DNA damage (8-oxoguanine) and enhanced NOX-2 expression in C57BL/6 mice with synergistic increases in Ogg1-/- mice (shown by immunohistochemistry). A similar pattern was found for oxidative burst of blood leukocytes and other markers of oxidative stress (4-hydroxynonenal, 3-nitrotyrosine) and inflammation (cyclooxygenase-2). We observed additive impairment of noise exposure and genetic Ogg1 deficiency on endothelium-independent relaxation (nitroglycerine), which may be due to exacerbated oxidative DNA damage leading to leukocyte activation and oxidative aldehyde dehydrogenase inhibition.Conclusions: The finding that chronic noise exposure causes oxidative DNA damage in mice is worrisome since these potential mutagenic lesions could contribute to cancer progression. Human field studies have to demonstrate whether oxidative DNA damage is also found in urban populations with high levels of noise exposure as recently shown for workers with high occupational noise exposure.


Assuntos
Aeronaves , Dano ao DNA , DNA Glicosilases/deficiência , Exposição Ambiental/efeitos adversos , Nitratos/metabolismo , Ruído/efeitos adversos , Explosão Respiratória/fisiologia , Animais , DNA Glicosilases/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia
8.
Free Radic Res ; 54(2-3): 195-205, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32183600

RESUMO

Exposure to asbestos fiber is central to mesothelial carcinogenesis. Recent sequencing studies on human and rodent malignant mesothelioma (MM) revealed frequently mutated genes, including CDKN2A, BAP1 and NF2. Crocidolite directly or indirectly catalyses the generation of hydroxyl radicals, which appears to be the major driving force for mesothelial mutations. DNA base modification is an oxidative DNA damage mechanism, where 8-hydroxy-2'-deoxyguanosine (8-OHdG) is the most abundant modification both physiologically and pathologically. Multiple distinct mechanisms work together to decrease the genomic level of 8-OHdG through the enzymatic activities of Mutyh, Ogg1 and Mth1. Knockout of one or multiple enzymes is not lethal but increases the incidence of tumors. Here, we used single knockout (KO) mice to test whether the deficiency of these three genes affects the incidence and prognosis of asbestos-induced MM. Intraperitoneal injection of 3 mg crocidolite induced MM at a fraction of 14.8% (4/27) in Mth1 KO, 41.4% (12/29) in Mutyh KO and 24.0% (6/25) in Ogg1 KO mice, whereas 31.7% (20/63) induction was observed in C57BL/6 wild-type (Wt) mice. The lifespan of female Mth1 KO mice was longer than that of female Wt mice (p = 0.0468). Whole genome scanning of MM with array-based comparative genomic hybridization revealed rare genomic alterations compared to MM in rats and humans. These results indicate that neither Mutyh deficiency nor Ogg1 deficiency promotes crocidolite-induced MM in mice, but the sanitizing nucleotide pool with Mth1 is advantageous in crocidolite-induced mesothelial carcinogenesis.


Assuntos
Asbesto Crocidolita/efeitos adversos , Asbesto Crocidolita/metabolismo , Enzimas Reparadoras do DNA/deficiência , Injeções Intraperitoneais/métodos , Monoéster Fosfórico Hidrolases/deficiência , Animais , Feminino , Camundongos
9.
Prog Neurobiol ; 180: 101613, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31026482

RESUMO

In mammals, including humans, MTH1 with 8-oxo-dGTPase and OGG1 with 8-oxoguanine DNA glycosylase minimize 8-oxoguanine accumulation in genomic DNA. We investigated age-related alterations in behavior, 8-oxoguanine levels, and neurogenesis in the brains of Mth1/Ogg1-double knockout (TO-DKO), Ogg1-knockout, and human MTH1-transgenic (hMTH1-Tg) mice. Spontaneous locomotor activity was significantly decreased in wild-type mice with age, and females consistently exhibited higher locomotor activity than males. This decrease was significantly suppressed in female but not male TO-DKO mice and markedly enhanced in female hMTH1-Tg mice. Long-term memory retrieval was impaired in middle-aged female TO-DKO mice. 8-Oxoguanine accumulation significantly increased in nuclear DNA, particularly in the dentate gyrus (DG), subventricular zone (SVZ) and major island of Calleja (ICjM) in middle-aged female TO-DKO mice. In middle-aged female TO-DKO mice, neurogenesis was severely impaired in SVZ and DG, accompanied by ICjM and DG atrophy. Conversely, expression of hMTH1 efficiently suppressed 8-oxoguanine accumulation in both SVZ and DG with hypertrophy of ICjM. These findings indicate that newborn neurons from SVZ maintain ICjM in the adult brain, and increased accumulation of 8-oxoguanine in nuclear DNA of neural progenitors in females is caused by 8-oxo-dGTP incorporation during proliferation, causing depletion of neural progenitors, altered behavior, and cognitive function changes with age.


Assuntos
Envelhecimento , Enzimas Reparadoras do DNA/metabolismo , Giro Denteado/metabolismo , Ínsulas Olfatórias/metabolismo , Neurogênese/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Proliferação de Células/fisiologia , Feminino , Camundongos Transgênicos , Neurônios/metabolismo , Fenótipo , Caracteres Sexuais
10.
Genes Genet Syst ; 94(1): 3-12, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30905890

RESUMO

Next-generation sequencing (NGS) has been used to determine the reference sequences of model organisms. This allows us to identify mutations by the chromosome number and sequence position where the base sequence has been altered, independent of any phenotypic alteration. Because the re-sequencing method by NGS covers all of the genome, it enables detection of the small number of spontaneous de novo germline mutations that occur in the reproductive lineage. The spontaneous mutation rate varies depending on the environment; for example, it increases when 8-oxoguanine accumulates. If the mutation rate (per replication) is greater than 1/genome size (2n), at least one mutation would generally occur in each cell division on average, producing cells with a different genome from the parent cell. Organisms with larger genomes and more divisions by cells in the reproductive lineage are expected to show higher mutation rates per generation, if the mutation rate per replication is constant among species. The accumulation of mutations that arose in the genome of ancestor cells has resulted in heterogeneity and diversity among extant species. In this sense, the ability to produce mutations in cells of the reproductive lineage can be considered as a key feature of organisms, even if mutations also present an unavoidable risk.


Assuntos
Linhagem da Célula , Mutação em Linhagem Germinativa , Animais , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Taxa de Mutação
11.
Sci Rep ; 7(1): 17762, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259249

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by accumulation of amyloid ß (Aß) and neurofibrillary tangles. Oxidative stress and inflammation are considered to play an important role in the development and progression of AD. However, the extent to which these events contribute to the Aß pathologies remains unclear. We performed inter-species comparative gene expression profiling between AD patient brains and the App NL-G-F/NL-G-F and 3xTg-AD-H mouse models. Genes commonly altered in App NL-G-F/NL-G-F and human AD cortices correlated with the inflammatory response or immunological disease. Among them, expression of AD-related genes (C4a/C4b, Cd74, Ctss, Gfap, Nfe2l2, Phyhd1, S100b, Tf, Tgfbr2, and Vim) was increased in the App NL-G-F/NL-G-F cortex as Aß amyloidosis progressed with exacerbated gliosis, while genes commonly altered in the 3xTg-AD-H and human AD cortices correlated with neurological disease. The App NL-G-F/NL-G-F cortex also had altered expression of genes (Abi3, Apoe, Bin2, Cd33, Ctsc, Dock2, Fcer1g, Frmd6, Hck, Inpp5D, Ly86, Plcg2, Trem2, Tyrobp) defined as risk factors for AD by genome-wide association study or identified as genetic nodes in late-onset AD. These results suggest a strong correlation between cortical Aß amyloidosis and the neuroinflammatory response and provide a better understanding of the involvement of gender effects in the development of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloidose/genética , Encéfalo/patologia , Expressão Gênica/genética , Inflamação/genética , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/genética , Amiloidose/patologia , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Gliose/genética , Gliose/patologia , Humanos , Inflamação/patologia , Masculino , Camundongos , Pessoa de Meia-Idade
12.
Pathol Int ; 67(11): 564-574, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29027306

RESUMO

Oxidative stress including iron excess has been associated with carcinogenesis. The level of 8-oxoguanine, a major oxidatively modified base in DNA, is maintained very low by three distinct enzymes, encoded by OGG1, MUTYH and MTH1. Germline biallelic inactivation of MUTYH represents a familial cancer syndrome called MUTYH-associated polyposis. Here, we used Mutyh-deficient mice to evaluate renal carcinogenesis induced by ferric nitrilotriacetate (Fe-NTA). Although the C57BL/6 background is cancer-resistant, a repeated intraperitoneal administration of Fe-NTA induced a high incidence of renal cell carcinoma (RCC; 26.7%) in Mutyh-deficient mice in comparison to wild-type mice (7.1%). Fe-NTA treatment also induced renal malignant lymphoma, which did not occur without the Fe-NTA treatment in both the genotypes. Renal tumor-free survival after Fe-NTA treatment was marginally different (P = 0.157) between the two genotypes. Array-based comparative genome hybridization analyses revealed, in RCC, the loss of heterozygosity in chromosomes 4 and 12 without p16INKA inactivation; these results were confirmed by a methylation analysis and showed no significant difference between the genotypes. Lymphomas showed a preference for genomic amplifications. Dlk1 inactivation by promoter methylation may be involved in carcinogenesis in both tumors. Fe-NTA-induced murine RCCs revealed significantly less genomic aberrations than those in rats, demonstrating a marked species difference.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , DNA Glicosilases/deficiência , Compostos Férricos/toxicidade , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/genética , Ácido Nitrilotriacético/análogos & derivados , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Nitrilotriacético/toxicidade , Estresse Oxidativo/fisiologia , Ratos , Especificidade da Espécie
14.
Sci Rep ; 6: 37889, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897204

RESUMO

In the mitochondria-mediated vicious cycle of Alzheimer's disease (AD), intracellular amyloid ß (Aß) induces mitochondrial dysfunction and reactive oxygen species, which further accelerate Aß accumulation. This vicious cycle is thought to play a pivotal role in the development of AD, although the molecular mechanism remains unclear. Here, we examined the effects of human mitochondrial transcriptional factor A (hTFAM) on the pathology of a mouse model of AD (3xTg-AD), because TFAM is known to protect mitochondria from oxidative stress through maintenance of mitochondrial DNA (mtDNA). Expression of hTFAM significantly improved cognitive function, reducing accumulation of both 8-oxoguanine, an oxidized form of guanine, in mtDNA and intracellular Aß in 3xTg-AD mice and increasing expression of transthyretin, known to inhibit Aß aggregation. Next, we found that AD model neurons derived from human induced pluripotent stem cells carrying a mutant PSEN1(P117L) gene, exhibited mitochondrial dysfunction, accumulation of 8-oxoguanine and single-strand breaks in mtDNA, and impaired neuritogenesis with a decreased expression of transthyretin, which is known to be downregulated by oxidative stress. Extracellular treatment with recombinant hTFAM effectively suppressed these deleterious outcomes. Moreover, the treatment increased expression of transthyretin, accompanied by reduction of intracellular Aß. These results provide new insights into potential novel therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Cognição , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Estresse Oxidativo , Pré-Albumina/metabolismo , Presenilina-1/genética , Espécies Reativas de Oxigênio/metabolismo
15.
Free Radic Biol Med ; 99: 385-391, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27585947

RESUMO

Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of oxidative stress. It has been commonly assumed to be a product of DNA repair, and therefore reflective of DNA oxidation. However, the source of urinary 8-oxodGuo is not understood, although potential confounding contributions from cell turnover and diet have been ruled out. Clearly it is critical to understand the precise biological origins of this important biomarker, so that the target molecule that is oxidised can be identified, and the significance of its excretion can be interpreted fully. In the present study we aimed to assess the contributions of nucleotide excision repair (NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the production of 8-oxodGuo, using selected genetically-modified mice. In xeroderma pigmentosum A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were unequivocal in ruling out a contribution from NER. In line with the XPA data, the production of urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding a role of the GG-NER pathway. The bulk of the literature supports the mechanism that the NER proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER. These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels. These findings call into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would largely exclude it as a biomarker of DNA oxidation. The urinary 8-oxodGuo levels from the MTH1 mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice. We suggest that these findings are due to redundancy in the process, and that other enzymes substitute for the lack of MTH1, however the present study cannot determine whether or not the 2'-deoxyribonucleotide pool is the source of urinary 8-oxodGuo. On the basis of the above, urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, derived from oxidatively generated damage to 2'-deoxyguanosine.


Assuntos
Síndrome de Cockayne/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Estresse Oxidativo , Xeroderma Pigmentoso/urina , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores/urina , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Nucleotídeos de Desoxiguanina/metabolismo , Desoxiguanosina/urina , Modelos Animais de Doenças , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
16.
Sci Rep ; 6: 32849, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27618981

RESUMO

Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity.


Assuntos
Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Instabilidade Genômica/genética , Inosina/metabolismo , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Pirofosfatases/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , DNA/metabolismo , Células HCT116 , Células HeLa , Humanos , Inosina/análise , Nucleotídeos de Inosina/metabolismo , Camundongos , Camundongos Knockout , Pirofosfatases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
17.
Genes Cells ; 21(10): 1030-1048, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27545963

RESUMO

Genomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis-related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E-deficient (Apoe-/- ) mice. PKCη expression was augmented in the aortas of mice with atherosclerosis and exclusively detected in MOMA2-positive macrophages within atherosclerotic lesions. Prkch+/+ Apoe-/- and Prkch-/- Apoe-/- mice were fed a high-fat diet (HFD), and the dyslipidemia observed in Prkch+/+ Apoe-/- mice was improved in Prkch-/- Apoe-/- mice, with a particular reduction in serum LDL cholesterol and phospholipids. Liver steatosis, which developed in Prkch+/+ Apoe-/- mice, was improved in Prkch-/- Apoe-/- mice, but glucose tolerance, adipose tissue and body weight, and blood pressure were unchanged. Consistent with improvements in LDL cholesterol, atherosclerotic lesions were decreased in HFD-fed Prkch-/- Apoe-/- mice. Immunoreactivity against 3-nitrotyrosine in atherosclerotic lesions was dramatically decreased in Prkch-/- Apoe-/- mice, accompanied by decreased necrosis and apoptosis in the lesions. ARG2 mRNA and protein levels were significantly increased in Prkch-/- Apoe-/- macrophages. These data show that PKCη deficiency improves dyslipidemia and reduces susceptibility to atherosclerosis in Apoe-/- mice, showing that PKCη plays a role in atherosclerosis development.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Metabolismo dos Lipídeos , Proteína Quinase C/deficiência , Animais , Aorta/metabolismo , Apoptose , Aterosclerose/patologia , Dieta Hiperlipídica , Suscetibilidade a Doenças , Dislipidemias/metabolismo , Fígado Gorduroso/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Estresse Oxidativo
19.
Sci Rep ; 6: 22086, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912170

RESUMO

Oxidative stress and mitochondrial dysfunction are implicated in aging-related neurodegenerative disorders. 8-Oxoguanine (8-oxoG), a common oxidised base lesion, is often highly accumulated in brains from patients with neurodegenerative disorders. MTH1 hydrolyses 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dGTP) to 8-oxo-dGMP and pyrophosphate in nucleotide pools, while OGG1 excises 8-oxoG paired with cytosine in DNA, thereby minimising the accumulation of 8-oxoG in DNA. Mth1/Ogg1-double knockout (TO-DKO) mice are highly susceptible to neurodegeneration under oxidative conditions and show increased accumulation of 8-oxoG in mitochondrial DNA (mtDNA) in neurons, suggesting that 8-oxoG accumulation in mtDNA causes mitochondrial dysfunction. Here, we evaluated the contribution of MTH1 and OGG1 to the prevention of mitochondrial dysfunction during neuritogenesis in vitro. We isolated cortical neurons from adult wild-type and TO-DKO mice and maintained them with or without antioxidants for 2 to 5 days and then examined neuritogenesis. In the presence of antioxidants, both TO-DKO and wild-type neurons exhibited efficient neurite extension and arborisation. However, in the absence of antioxidants, the accumulation of 8-oxoG in mtDNA of TO-DKO neurons was increased resulting in mitochondrial dysfunction. Cells also exhibited poor neurite outgrowth with decreased complexity of neuritic arborisation, indicating that MTH1 and OGG1 are essential for neuritogenesis under oxidative conditions.


Assuntos
Córtex Cerebral/metabolismo , DNA Mitocondrial/metabolismo , Guanina/análogos & derivados , Mitocôndrias/metabolismo , Neuritos/metabolismo , Animais , Células Cultivadas , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Mitocondrial/genética , Guanina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Oxirredução , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
20.
Neuropathol Appl Neurobiol ; 41(2): 227-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24707896

RESUMO

AIMS: Galectin-1, a member of the ß-galactoside-binding lectin family, accumulates in neurofilamentous lesions in the spinal cords of both sporadic and familial amyotrophic lateral sclerosis (ALS) patients with a superoxide dismutase 1 gene (SOD1) mutation (A4V). The aim of this study was to evaluate the roles of endogenous galectin-1 in the pathogenesis of ALS. METHODS: Expression of galectin-1 in the spinal cord of mutant SOD1 transgenic (SOD1(G93A) ) mice was examined by pathological analysis, real-time RT-PCR and Western blotting. The effects of galectin-1 deficiency were evaluated by cross-breeding SOD1(G93A) mice with galectin-1 null (Lgals1(-/-) ) mice. RESULTS: Before ALS-like symptoms developed in SOD1(G93A) /Lgals1(+/+) mice, strong galectin-1 immunoreactivity was observed in swollen motor axons and colocalized with aggregated neurofilaments. Electron microscopic observations revealed that the diameters of swollen motor axons in the spinal cord were significantly smaller in SOD1(G93A) /Lgals1(-/-) mice, and there was less accumulation of vacuoles compared with SOD1(G93A) /Lgals1(+/+) mice. In symptomatic SOD1(G93A) /Lgals1(+/+) mice, astrocytes surrounding motor axons expressed a high level of galectin-1. CONCLUSIONS: Galectin-1 accumulates in neurofilamentous lesions in SOD1(G93A) mice, as previously reported in humans with ALS. Galectin-1 accumulation in motor axons occurs before the development of ALS-like symptoms and is associated with early processes of axonal degeneration in SOD1(G93A) mice. In contrast, galectin-1 expressed in astrocytes may be involved in axonal degeneration during symptom presentation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Axônios/patologia , Galectina 1/deficiência , Degeneração Neural/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/metabolismo , Western Blotting , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Imunoeletrônica , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/patologia , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/genética , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA