RESUMO
The marine alkaloid erebusinone is a secondary metabolite isolated from the Antarctic sponge Isodictya erinacea. Initial biological assays have shown that erebusinone increases amphipod mortality, probably by inhibition of the biosynthesis of molting hormone (ecdysone). Herein, we report the first total synthesis of the proposed structure of erebusinone and a structural revision.
Assuntos
Alcaloides , Poríferos , Animais , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/síntese química , Estrutura Molecular , Poríferos/química , Biologia Marinha , Regiões Antárticas , Muda/efeitos dos fármacos , Ecdisona/farmacologia , Anfípodes/efeitos dos fármacosRESUMO
Two novel pyrroloiminoquinone alkaloids, 6-chlorodamirone A and 6-bromodamirone A, have been identified for the first time from the marine sponge Latrunculia sp. (order: Poecilosclerida: family Latrunculiidae), sourced from Western Australia. Alongside these new compounds, seven previously known metabolites were also isolated. Despite being obtained in submilligram quantities, the structures of these natural products were successfully elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. To confirm the structures of these newly discovered alkaloids, a semisynthetic approach was employed starting from the more abundant metabolite, damirone A, additionally, single crystal X-ray crystallography was used to validate our structural proposals. The semisynthetic studies suggest that the chlorinated alkaloids are likely formed through a nonenzymatic conjugate halide substitution reaction rather than an enzymatic process. This reactivity parallels that observed in related metabolites, such as the caulibugulones B and C. Furthermore, a biomimetic cascade reaction was attempted to synthesize the spirodienone moiety characteristic of the discorhabdin alkaloids, inspired by the nucleophilic substitution observed in the tricyclic damirone A system. Albeit unsuccessful, these findings provide valuable insight into the reactivity of halogenated pyrroloiminoquinones under various conditions.
Assuntos
Alcaloides , Poríferos , Pirroliminoquinonas , Poríferos/química , Alcaloides/química , Estrutura Molecular , Cristalografia por Raios X , Animais , Pirroliminoquinonas/química , Austrália Ocidental , Biologia Marinha , Halogenação , Ressonância Magnética Nuclear BiomolecularRESUMO
We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.
Assuntos
COVID-19 , Humanos , Estrutura Molecular , SARS-CoV-2 , Imunidade Inata , Citosina , Redes e Vias Metabólicas , AntiviraisRESUMO
OBJECTIVES: The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata. METHODS: The present study characterized the urinary metabolic profile of 243 infected individuals by quantitative nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS). Results were compared with a historical cohort of noninfected subjects. Moreover, we assessed the concentration of recently identified antiviral nucleosides and their association with other metabolites and clinical data. RESULTS: Urinary metabolomics can stratify patients into classes of disease severity, with a discrimination ability comparable to that of clinical biomarkers. Kynurenines showed the highest fold change in clinically-deteriorated patients and higher-risk subjects. Unique metabolite clusters were also generated based on age, sex, and body mass index (BMI). Changes in the concentration of antiviral nucleosides were associated with either other metabolites or clinical variables. Increased kynurenines and reduced trigonelline excretion indicated a disrupted nicotinamide adenine nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway. CONCLUSIONS: Our results confirm the potential of urinary metabolomics for noninvasive diagnostic/prognostic screening and show that the antiviral nucleosides could represent novel biomarkers linking viral load, immune response, and metabolism. Moreover, we established for the first time a casual link between kynurenine accumulation and deranged NAD+/SIRT1, offering a novel mechanism through which SARS-CoV-2 manipulates host physiology.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Sirtuína 1 , NAD , SARS-CoV-2 , Metabolômica/métodos , Biomarcadores/urina , Antivirais , Teste para COVID-19RESUMO
Two nitrogenous rearranged spongian nor-diterpenoids, dendrillic acids A and B, were isolated from a marine sponge Dendrilla sp. (order: Dendroceratida; family: Darwinellidae). The structures of the metabolites were elucidated on the basis of spectroscopic analysis as well as density functional theory prediction of NMR chemical shifts and application of the DP4+ algorithm. The absolute configuration of the metabolites was established via comparison of experimental and time-dependent density functional theory predicted electronic circular dichroism data. An unusual epimerization reaction was observed leading to the interconversion of the metabolites upon storage in dimethyl sulfoxide solution, which is proposed to proceed via an anionic pathway as probed via isotopic incorporation experiments. Evaluation against a panel of micro-organisms and cell lines revealed that the compounds were devoid of any significant biological activity against all organisms tested, with the exception of mild antiprotozoal activity displayed by dendrillic acid B (2) against Giardia duodenalis.
Assuntos
Diterpenos , Poríferos , Animais , Estrutura Molecular , Poríferos/química , Espectroscopia de Ressonância Magnética , Diterpenos/química , Linhagem CelularRESUMO
Marine natural products occurring along the Western Australian coastline are the focus of this review. Western Australia covers one-third of the Australian coast, from tropical waters in the far north of the state to cooler temperate and Antarctic waters in the south. Over 40 years of research has resulted in the identification of a number of different types of secondary metabolites including terpenoids, alkaloids, polyketides, fatty acid derivatives, peptides and arsenic-containing natural products. Many of these compounds have been reported to display a variety of bioactivities. A description of the compound classes and their associated bioactivities from marine organisms found along the Western Australian coastline is presented.
Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Austrália , Organismos Aquáticos , Austrália Ocidental , Regiões AntárticasRESUMO
Two novel free porphyrins, isabellins A and B, as well as the known compounds corallistin D and deuteroporphyrin IX were isolated from a marine sponge Isabela sp. LC-MS analysis of the crude extract revealed that the natural products were present both as free porphyrins and iron(III) coordinated hemins, designated isabellihemin A, isabellihemin B, corallistihemin D and deuterohemin IX, respectively. Structures were determined via high-resolution mass spectrometry, UV-Vis spectroscopy and extensive NOESY NMR spectroscopic experiments. The type-I alkyl substitution pattern of isabellin A and isabellihemin A was assigned unambiguously by single crystal X-ray diffraction. Biological evaluation of the metabolites revealed potent cytotoxicity for isabellin A against the NS-1 murine myeloma cell line.
Assuntos
Mieloma Múltiplo , Poríferos , Porfirinas , Animais , Camundongos , Hemina/metabolismo , Porfirinas/farmacologia , Poríferos/metabolismo , Compostos Férricos , Linhagem Celular Tumoral , Austrália , Espectroscopia de Ressonância MagnéticaRESUMO
Two previously reported bis-indole alkaloids, echinosulfone A and echinosulfonic acid B, have been isolated for the first time from a Western Australian marine sponge, Crella sp. (order: Poecilosclerida, family: Crellidae). Single-crystal X-ray diffraction of a decomposition product of echinosulfone A prompted our investigation and subsequent structure reassignment of the echinosulfonic acid natural product family, which we report here. The reassignments are supported by analysis of 1D and 2D NMR data, MS fragmentation, and DFT calculations of 13C NMR shifts.
Assuntos
Alcaloides Indólicos/química , Ácidos Sulfônicos/química , Animais , Austrália , Cristalografia por Raios X , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Poríferos/química , Difração de Raios XRESUMO
Seven new nitrile-bearing polyacetylenes, named albanitriles A-G, were isolated from a marine sponge of the Mycale genus (Order: Poecilosclerida, Family: Mycalidae) collected near Albany, Western Australia. Structural elucidation was achieved using a combination of high-resolution mass spectrometry and ultraviolet/visible, infrared, and nuclear magnetic resonance spectroscopy. The compounds were found to possess moderate activity against Giardia duodenalis when compared to a metronidazole positive control.