Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7097, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154007

RESUMO

Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.


Assuntos
Aorta , Macrófagos , Animais , Macrófagos/citologia , Macrófagos/metabolismo , Aorta/citologia , Camundongos , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Diferenciação Celular , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Angiotensina II , Proliferação de Células , Células-Tronco/citologia , Células-Tronco/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Neovascularização Fisiológica , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Masculino , Hematopoese/fisiologia , Tirosina Quinase 3 Semelhante a fms
2.
FASEB J ; 37(4): e22846, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856983

RESUMO

Colchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro. In atherosclerosis induced by high-cholesterol diet, Apoe-/- mice treated with colchicine had 50% reduction in aortic oil Red O+ plaque area compared to saline control (p = .001) and lower oil Red O+ staining of aortic sinus lesions (p = .03). In vitro, addition of 10 nM colchicine inhibited foam cell formation from murine and human macrophages after treatment with oxidized LDL (ox-LDL). Mechanistically, colchicine downregulated glycosylation and surface expression of the ox-LDL uptake receptor, CD36, and reduced CD36+ staining in aortic sinus plaques. It also decreased macrophage uptake of cholesterol crystals, resulting in lower intracellular lysosomal activity, inhibition of the NLRP3 inflammasome, and reduced secretion of IL-1ß and IL-18. Colchicine's anti-atherosclerotic actions were accentuated in a mouse model of unstable plaque induced by carotid artery tandem stenosis surgery, where it decreased lesion size by 48% (p = .01), reduced lipid (p = .006) and necrotic core area (p = .007), increased collagen content and cap-to-necrotic core ratio (p = .05), and attenuated plaque neutrophil extracellular traps (p < .001). At low dose, colchicine's effects were not accompanied by the evidence of microtubule depolymerization. Together, these results show that colchicine exerts anti-atherosclerotic and plaque-stabilizing effects at low dose by inhibiting foam cell formation and cholesterol crystal-induced inflammation. This provides a new framework to support its repurposing for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Estenose das Carótidas , Humanos , Animais , Camundongos , Células Espumosas , Colchicina , Colesterol
3.
Anal Chem ; 94(8): 3476-3484, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157429

RESUMO

Chromatography is often used as a method for reducing sample complexity prior to analysis by mass spectrometry, and the use of retention time (RT) is becoming increasingly popular to add valuable supporting information in lipid identification. The RT of lipids with the same headgroup in reversed-phase separation can be predicted using the equivalent carbon number (ECN) model. This model describes the effects of acyl chain length and degree of saturation on lipid RT. For the first time, we have found a robust correlation in the chromatographic separation of lipids with different headgroups that share the same fatty acid motive. This relationship can be exploited to perform interclass RT conversion (IC-RTC) by building a model from RT measurements from lipid standards that allows the prediction of RT of one lipid subclass based on another. Here, we utilize ECN modeling and IC-RTC to build a glycerophospholipid RT library with 517 entries based on 136 tandem mass spectrometry-characterized lipid RTs from NIST SRM-1950 plasma and lipid standards. The library was tested on a patient cohort undergoing coronary artery bypass grafting surgery (n = 37). A total of 156 unique circulating glycerophospholipids were identified, of which 52 (1 LPG, 24 PE, 5 PG, 18 PI, and 9 PS) were detected with IC-RTC, thereby demonstrating the utility of this technique for the identification of lipid species not found in commercial standards.


Assuntos
Carbono , Lipidômica , Glicerofosfolipídeos , Humanos , Plasma , Espectrometria de Massas em Tandem/métodos
4.
FASEB J ; 36(2): e22154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032419

RESUMO

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.


Assuntos
Antígenos CD36/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Células Espumosas/metabolismo , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
5.
Cardiovasc Drugs Ther ; 36(6): 1175-1186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34432196

RESUMO

INTRODUCTION: Recurrent event rates after myocardial infarction (MI) remain unacceptably high, in part because of the continued growth and destabilization of residual coronary atherosclerotic plaques, which may occur despite lipid-lowering therapy. Inflammation is an important contributor to this ongoing risk. Recent studies have shown that the broad-acting anti-inflammatory agent, colchicine, may reduce adverse cardiovascular events in patients post-MI, although the mechanistic basis for this remains unclear. Advances in endovascular arterial wall imaging have allowed detailed characterization of the burden and compositional phenotype of coronary plaque, along with its natural history and responsiveness to treatment. One such example has been the use of optical coherence tomography (OCT) to demonstrate the plaque-stabilizing effects of statins on both fibrous cap thickness and the size of lipid pools within plaque. METHODS: The Phase 2, multi-centre, double-blind colchicine for coronary plaque modification in acute coronary syndrome (COCOMO-ACS) study will evaluate the effect of colchicine 0.5 mg daily on coronary plaque features using serial OCT imaging in patients following MI. Recruitment for the trial has been completed with 64 participants with non-ST elevation MI randomized 1:1 to colchicine or placebo in addition to guideline recommended therapies, including high-intensity statins. The primary endpoint is the effect of colchicine on the minimal fibrous cap thickness of non-culprit plaque over an 18-month period. The COCOMO-ACS study will determine whether addition of colchicine 0.5 mg daily to standard post-MI treatment has incremental benefits on high-risk features of coronary artery plaques. If confirmed, this will provide new mechanistic insights into how colchicine may confer clinical benefits in patients with atherosclerotic cardiovascular disease. TRIAL REGISTRATION: ANZCTR trial registration number: ACTRN12618000809235. Date of trial registration: 11th of May 2018.


Assuntos
Colchicina , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Síndrome Coronariana Aguda , Colchicina/uso terapêutico , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Vasos Coronários/diagnóstico por imagem , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipídeos/uso terapêutico , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/tratamento farmacológico , Fenótipo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/tratamento farmacológico , Tomografia de Coerência Óptica , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA