Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zoology (Jena) ; 166: 126197, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232351

RESUMO

Living at high altitudes impose physiological and ecological challenges to which species may respond altering their body size, body proportions, and the shape of their body parts. Despite the importance of this topic for understanding the origin of species diversity, little attention has been invested in this phenomenon at the populational level. This paper study the relationship between altitude and body size, body proportions, and forewing shape venation of two populations of the parasitoid wasp Cotesia flavipes. Wasps were collected from Diatraea spp. larvae from sugarcane crops in two Colombian mountain ranges that cover between 600 m and 2143 m of altitude. Linear measurements of different body regions and geometric morphometrics of the forewing were subject to multivariate comparisons and allometric analyses to assess variation and to compare trends between ranges. Central (600 m to 1704 m) and Eastern Cordillera (877 m to 2143 m) populations showed different trends between body size and altitude. Allometric trends were not uniform within or between populations nor between structures. The allometric slopes of five body measurements from a single altitude differed from these from its own mountain range suggesting that body size trends along the cordilleras are a consequence of altitude and not of intrinsic body resource allocation processes. Wing shape between populations differed; however, these changes were poorly related to altitude. In agreement with recent studies in other groups, the observed allometric and wing shape differences between the two C. flavipes populations could be a plasticity response to altitude with interesting implications for posterior genetic differentiation.


Assuntos
Altitude , Tamanho Corporal , Vespas , Animais , Vespas/fisiologia , Vespas/anatomia & histologia , Colômbia , Asas de Animais/anatomia & histologia
2.
J Econ Entomol ; 108(1): 201-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470121

RESUMO

Yellow passionfruit (Passiflora edulis f. flavicarpa O. Deg.) is a tropical fruit crop that is meeting increasing demand both in local and international markets in South America. The lance fly, Dasiops inedulis (Diptera: Lonchaeidae), affects P. edulis floral buds and flowers, and is thought to cause important yield losses in this crop. In Colombia, D. inedulis are commonly controlled through calendar-based applications of chemically synthesized insecticides, and no scientific criteria exist to guide pest management. In the present study, we simulated D. inedulis injury to passionfruit plants, over the course of three production cycles. We assessed the effect of seven different categories of flower bud removal (from 0% to 79.9%) on passionfruit yield and fruit quality parameters. Removal rates above 20% caused a significant reduction in the number of flowers, while yield levels were lowest at 50-79.9% bud removal. With increasing rates of flower bud removal, we observed higher initial production of buds and lower levels of natural abortion of floral and fruiting structures. For the three consecutive harvests, maximum yield levels were 7.57±5.51 kg (mean±SD; with 0-9.9% damage), and minimum yield was 2.37±2.15 kg (60-69.9% damage) per plant. For fruit quality parameters, D. inedulis injury did not affect fruit pulp weight or the content of soluble solids (Brix). Our work provides insights into the impact of D. inedulis on yellow passionfruit production, and constitutes a basis for future integrated pest management programs for this pest.


Assuntos
Dípteros/fisiologia , Passiflora/parasitologia , Animais , Biomassa , Frutas/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Passiflora/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA