Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Phys Chem B ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738820

RESUMO

Molecular dynamics simulations have been used extensively to determine equilibrium properties of the electrode-electrolyte interface in supercapacitors held at various potentials. While such studies are essential to understand and optimize the performance of such energy storage systems, investigation of the dynamics of adsorption during the charge of the supercapacitors is also necessary. Dynamical properties are especially important to get an insight into the power density of supercapacitors, one of their main assets. In this work, we propose a new method to coarse-grain simulations of all-atom systems and compute effective Lennard-Jones and Coulomb parameters, allowing subsequently to analyze the trajectories of adsorbing ions. We focus on pure 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide in contact with planar carbon electrodes. We characterize the evolution of the ion orientation and ion-electrode distance during adsorption and show that ions reorientate as they adsorb. We then determine the forces experienced by the adsorbing ions and demonstrate that Coulomb forces are dominant at a long range while van der Waals forces are dominant at a short range. We also show that there is an almost equal contribution from the two forces at an intermediate distance, explaining the peak of ion density close to the electrode surface.

2.
J Chem Theory Comput ; 20(8): 3069-3084, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38619076

RESUMO

Identifying optimal collective variables to model transformations using atomic-scale simulations is a long-standing challenge. We propose a new method for the generation, optimization, and comparison of collective variables that can be thought of as a data-driven generalization of the path collective variable concept. It consists of a kernel ridge regression of the committor probability, which encodes a transformation's progress. The resulting collective variable is one-dimensional, interpretable, and differentiable, making it appropriate for enhanced sampling simulations requiring biasing. We demonstrate the validity of the method on two different applications: a precipitation model and the association of Li+ and F- in water. For the former, we show that global descriptors such as the permutation invariant vector allow reaching an accuracy far from the one achieved via simpler, more intuitive variables. For the latter, we show that information correlated with the transformation mechanism is contained in the first solvation shell only and that inertial effects prevent the derivation of optimal collective variables from the atomic positions only.

3.
ACS Nano ; 18(14): 10124-10132, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38511608

RESUMO

MXenes are 2D transition metal carbides, nitrides, and/or carbonitrides that can be intercalated with cations through chemical or electrochemical pathways. While the insertion of alkali and alkaline earth cations into Ti3C2Tx MXenes is well studied, understanding of the intercalation of redox-active transition metal ions into MXenes and its impact on their electronic and electrochemical properties is lacking. In this work, we investigate the intercalation of Cu ions into Ti3C2Tx MXene and its effect on its electronic and electrochemical properties. Using X-ray absorption spectroscopy (XAS) and ab initio molecular dynamics (AIMD), we observe an unusual phenomenon whereby Cu2+ ions undergo partial reduction upon intercalation from the solution into the MXene. Furthermore, using in situ XAS, we reveal changes in the oxidation states of intercalated Cu ions and Ti atoms during charging. We show that the pseudocapacitive response of Cu-MXene originates from the redox of both the Cu intercalant and Ti3C2Tx host. Despite highly reducing potentials, Cu ions inside the MXene show an excellent stability against full reduction upon charging. Our findings demonstrate how electronic coupling between Cu ions and Ti3C2Tx modifies electrochemical and electronic properties of the latter, providing the framework for the rational design and utilization of transition metal intercalants for tuning the properties of MXenes for various electrochemical systems.

4.
J Am Chem Soc ; 146(12): 8142-8148, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38486506

RESUMO

Water-in-salts (WiSs) have recently emerged as promising electrolytes for energy storage applications ranging from aqueous batteries to supercapacitors. Here, ab initio molecular dynamics is used to study the structure of a 21 m LiTFSI WiS. The simulation reveals a new feature, in which the lithium ions form polymer-like nanochains that involve up to 10 ions. Despite the strong Coulombic interaction between them, the ions in the chains are found at a distance of 2.5 Å. They show a drastically different solvation shell compared to that of the isolated ions, in which they share on average two water molecules. The nanochains have a highly transient character due to the low free energy barrier for forming/breaking them. Providing new insights into the nanostructure of WiS electrolytes, our work calls for reevaluating our current knowledge of highly concentrated electrolytes and the impact of the modification of the solvation of active species on their electrochemical performances.

5.
Chem Mater ; 36(3): 1308-1317, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38385123

RESUMO

Photoacids are organic molecules that release protons under illumination, providing spatiotemporal control of the pH. Such light-driven pH switches offer the ability to cyclically alter the pH of the medium and are highly attractive for a wide variety of applications, including CO2 capture. Although photoacids such as protonated merocyanine can enable fully reversible pH cycling in water, they have a limited chemical stability against hydrolysis (<24 h). Moreover, these photoacids have low solubility, which limits the pH-switching ability in a buffered solution such as dissolved CO2. In this work, we introduce a simple pathway to dramatically increase stability and solubility of photoacids by tuning their solvation environment in binary solvent mixtures. We show that a preferential solvation of merocyanine by aprotic solvent molecules results in a 60% increase in pH modulation magnitude when compared to the behavior in pure water and can withstand stable cycling for >350 h. Our results suggest that a very high stability of merocyanine photoacids can be achieved in the right solvent mixtures, offering a way to bypass complex structural modifications of photoacid molecules and serving as the key milestone toward their application in a photodriven CO2 capture process.

6.
ACS Nano ; 18(1): 1181-1194, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117206

RESUMO

When a surface is immersed in a solution, it usually acquires a charge, which attracts counterions and repels co-ions to form an electrical double layer. The ions directly adsorbed to the surface are referred to as the Stern layer. The structure of the Stern layer normal to the interface was described decades ago, but the lateral organization within the Stern layer has received scant attention. This is because instrumental limitations have prevented visualization of the ion arrangements except for atypical, model, crystalline surfaces. Here, we use high-resolution amplitude modulated atomic force microscopy (AFM) to visualize in situ the lateral structure of Stern layer ions adsorbed to polycrystalline gold, and amorphous silica and gallium nitride (GaN). For all three substrates, when the density of ions in the layer exceeds a system-dependent threshold, correlation effects induce the formation of close packed structures akin to Wigner crystals. Depending on the surface and the ions, the Wigner crystal-like structure can be hexagonally close packed, cubic, or worm-like. The influence of the electrolyte concentration, species, and valence, as well as the surface type and charge, on the Stern layer structures is described. When the system parameters are changed to reduce the Stern layer ion surface excess below the threshold value, Wigner crystal-like structures do not form and the Stern layer is unstructured. For gold surfaces, molecular dynamics (MD) simulations reveal that when sufficient potential is applied to the surface, ion clusters form with dimensions similar to the Wigner crystal-like structures in the AFM images. The lateral Stern layer structures presented, and in particular the Wigner crystal-like structures, will influence diverse applications in chemistry, energy storage, environmental science, nanotechnology, biology, and medicine.

7.
ACS Appl Mater Interfaces ; 15(51): 59380-59388, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38095112

RESUMO

Among a variety of promising cathode materials for Na-ion batteries, polyanionic Na-insertion compounds are among the preferred choices due to known fast sodium transfer through the ion channels along their framework structures. The most interesting representatives are Na3V2(PO4)3 (NVP) and Na3V2(PO4)2F3 (NVPF), which display large Na+ diffusion coefficients (up to 10-9 m2 s-1 in NVP) and high voltage plateaux (up to 4.2 V for NVPF). While the diffusion in the solid material is well-known to be the rate-limiting step during charging, already being thoroughly discussed in the literature, interfacial transport of sodium ions from the liquid electrolyte toward the electrode was recently shown to be important due to complex ion desolvation effects at the surface. In order to fill the blanks in the description of the electrode/electrolyte interface in Na-ion batteries, we performed a molecular dynamics study of the local nanostructure of a series of carbonate-based sodium electrolytes at the NVP and the NVPF interfaces along with careful examination of the desolvation phenomenon. We show that the tightness of solvent packing at the electrode surface is a major factor determining the height of the free energy barrier associated with desolvation, which explains the differences between the NVP and the NVPF structures. To rationalize and emphasize the remarkable properties of this family of cathode materials, a complementary comparative analysis of the same electrolyte system at the carbon electrode interface was also performed.

9.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815105

RESUMO

BaSnF4 is a prospective solid state electrolyte for fluoride ion batteries. However, the diffusion mechanism of the fluoride ions remains difficult to study, both in experiments and in simulations. In principle, ab initio molecular dynamics could allow to fill this gap, but this method remains very costly from the computational point of view. Using machine learning potentials is a promising method that can potentially address the accuracy issues of classical empirical potentials while maintaining high efficiency. In this work, we fitted a dipole polarizable ion model and trained machine learning potential for BaSnF4 and made comprehensive comparisons on the ease of training, accuracy and efficiency. We also compared the results with the case of a simpler ionic system (NaF). We show that contrarily to the latter, for BaSnF4 the machine learning potential offers much higher versatility. The current work lays foundations for the investigation of fluoride ion mobility in BaSnF4 and provides insight on the choice of methods for atomistic simulations.

12.
J Phys Chem B ; 127(3): 742-756, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36651119

RESUMO

Redox-active organic species play an important role in catalysis, energy storage, and biotechnology. One of the representatives is the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical, used as a mediator in organic synthesis and considered a safe alternative to heavy metals. In order to develop a TEMPO-based system with well-controlled electrochemical and catalytic properties, a reaction medium should be carefully chosen. Being highly conductive, stable, and low flammability fluids, ionic liquids (ILs) seem to be promising solvents with easily adjustable physical and solvation properties. In this work, we give an insight into the local structure of ILs around TEMPO and its oxidized form, TEMPO+, underlining striking differences in the solvation of these two species. The analysis is coupled with a study of thermodynamics and kinetics of oxidation in the frame of Marcus theory. Our systematic investigation includes imidazolium, pyrrolydinium, and phosphonium families combined with anions of different size, polarity, and flexibility, opting to provide a clear and comprehensive picture of the impact of the nature of IL ions on the behavior of radical/cation redox pairs. The obtained results will help to explain experimentally observed effects and to rationalize the design of TEMPO/IL systems.

13.
J Phys Chem Lett ; 14(1): 101-106, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36573965

RESUMO

Ionic liquids generally display peculiar structural features that impact their physical properties, such as the formation of polar and apolar domains. Recently, ionic liquids functionalized with anthraquinone and TEMPO redox groups were shown to increase the energy storage performance of supercapacitors, but their structure has not yet been characterized. In this work, we use polarizable molecular dynamics to study the nanostructuration of such biredox ionic liquids. We show that TEMPO nitroxyl functions tend to aggregate, while the anthraquinone groups favor stacked arrangements. The latter eventually percolate through the whole liquid, which sheds some light on the mechanisms at play within biredox ionic liquid-based supercapacitors.

14.
J Am Chem Soc ; 144(49): 22734-22746, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468903

RESUMO

The electrocatalytic epoxidation of alkenes at heterogeneous catalysts using water as the sole oxygen source is a promising safe route toward the sustainable synthesis of epoxides, which are essential building blocks in organic chemistry. However, the physicochemical parameters governing the oxygen-atom transfer to the alkene and the impact of the electrolyte structure on the epoxidation reaction are yet to be understood. Here, we study the electrocatalytic epoxidation of cyclooctene at the surface of gold in hybrid organic/aqueous mixtures using acetonitrile (ACN) solvent. Gold was selected, as in ACN/water electrolytes gold oxide is formed by reactivity with water at potentials less anodic than the oxygen evolution reaction (OER). This unique property allows us to demonstrate that a sacrificial mechanism is responsible for cyclooctene epoxidation at metallic gold surfaces, proceeding through cyclooctene activation, while epoxidation at gold oxide shares similar reaction intermediates with the OER and proceeds via the activation of water. More importantly, we show that the hydrophilicity of the electrode/electrolyte interface can be tuned by changing the nature of the supporting salt cation, hence affecting the reaction selectivity. At low overpotential, hydrophilic interfaces formed using strong Lewis acid cations are found to favor gold passivation. Instead, hydrophobic interfaces created by the use of large organic cations favor the oxidation of cyclooctene and the formation of epoxide. Our study directly demonstrates how tuning the hydrophilicity of electrochemical interfaces can improve both the yield and selectivity of anodic reactions at the surface of heterogeneous catalysts.


Assuntos
Alcenos , Oxigênio , Alcenos/química , Ciclo-Octanos , Compostos de Epóxi/química , Ouro , Interações Hidrofóbicas e Hidrofílicas , Oxigênio/química , Água/química
15.
J Chem Phys ; 157(18): 184801, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379806

RESUMO

Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve a wide range of techniques, both experimental and theoretical. Modeling and simulations methods, such as density functional theory or molecular dynamics, provide key information on the structural and dynamic properties of the systems. Of particular importance are polarization effects of the electrode/electrolyte interface, which are difficult to simulate accurately. Here, we show how these electrostatic interactions are taken into account in the framework of the Ewald summation method. We discuss, in particular, the formal setup for calculations that enforce periodic boundary conditions in two directions, a geometry that more closely reflects the characteristics of typical electrolyte/electrode systems and presents some differences with respect to the more common case of periodic boundary conditions in three dimensions. These formal developments are implemented and tested in MetalWalls, a molecular dynamics software that captures the polarization of the electrolyte and allows the simulation of electrodes maintained at a constant potential. We also discuss the technical aspects involved in the calculation of two sets of coupled degrees of freedom, namely the induced dipoles and the electrode charges. We validate the implementation, first on simple systems, then on the well-known interface between graphite electrodes and a room-temperature ionic liquid. We finally illustrate the capabilities of MetalWalls by studying the adsorption of a complex functionalized electrolyte on a graphite electrode.

16.
ACS Nano ; 16(11): 18658-18666, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36269844

RESUMO

Metallic 1T-MoS2 is a promising electrode material for supercapacitor applications. Its layered structure allows the efficient intercalation of ions, leading to experimental volumetric capacitance as high as 140 F/cm3. Molecular dynamics could in principle be used to characterize its charging mechanism; however, unlike conventional nanoporous carbon, 1T-MoS2 is a multicomponent electrode. The Mo and S atoms have very different electronegativities so that 1T-MoS2 cannot be simulated accurately using the conventional constant potential method. In this work, we show that controlling the electrochemical potential of the atoms allows one to recover average partial charges for the elements in agreement with electronic structure calculations for the material at rest, without compromising the ability to simulate systems under an applied voltage. The simulations yield volumetric capacitances in agreement with experiments. We show that due to the large electronegativity of S, the co-ion desorption is the main charging mechanism at play during the charging process. This contrasts drastically with carbon materials for which ion exchange and counterion adsorption usually dominate. In the future, our method can be extended to the study of a wide range of families of 2D layered materials such as MXenes.

17.
J Chem Phys ; 157(9): 094103, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075704

RESUMO

Quinones are redox active organic molecules that have been proposed as an alternative choice to metal-based materials in electrochemical energy storage devices. Functionalization allows one to fine tune not only their chemical stability but also the redox potential and kinetics of the electron transfer reaction. However, the reaction rate constant is not only determined by the redox species but also impacted by solvent effects. In this work, we show how the functionalization of benzoquinone with different functional groups impacts the solvent reorganization free energies of electron transfer half-reactions in acetonitrile. The use of molecular density functional theory, whose computational cost for studying the electron transfer reaction is considerably reduced compared to the state-of-the-art molecular dynamics simulations, enables us to perform a systematic study. We validate the method by comparing the predictions of the solvation shell structure and the free energy profiles for electron transfer reaction to the reference classical molecular dynamics simulations in the case of anthraquinone solvated in acetonitrile. We show that all the studied electron transfer half-reactions follow the Marcus theory, regardless of functional groups. Consequently, the solvent reorganization free energy decreases as the molecular size increases.

18.
Chem Rev ; 122(12): 10860-10898, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35389636

RESUMO

Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.

19.
ACS Appl Mater Interfaces ; 14(18): 20835-20847, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481776

RESUMO

Li-ion batteries are the electrochemical energy storage technology of choice of today's electrical vehicles and grid applications with a growing interest for Na-ion and K-ion systems based on either aqueous or non-aqueous electrolyte for power, cost, and sustainable reasons. The rate capability of alkali-metal-ion batteries is influenced by ion transport properties in the bulk of the electrolyte, as well as by diverse effects occurring at the vicinity of the electrode and electrolyte interface. Therefore, identification of the predominant factor affecting the rate capability of electrodes still remains a challenge and requires suitable experimental and computational methods. Herein, we investigate the mechanistic of the K+ insertion process in the Prussian blue phase, Fe4III[FeII(CN)6]3 in both aqueous and non-aqueous electrolytes, which reveals drastic differences. Through combined electrochemical characterizations, electrochemical-quartz-crystal-microbalance and ac-electrogravimetric analyses, we provide evidences that what matters the most for fast ion transport is the positioning of the partially solvated cations adsorbed at the material surface in aqueous as opposed to non-aqueous electrolytes. We rationalized such findings by molecular dynamics simulations that establish the K+ repartition profile within the electrochemical double layer. A similar trend was earlier reported by our group for the aqueous versus non-aqueous insertion of Li+ into LiFePO4. Such a study unveils the critical but overlooked role of the electrode-electrolyte interface in ruling ion transport and insertion processes. Tailoring this interface structuring via the proper salt-solvent interaction is the key to enabling the best power performances in alkali-metal-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA