Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant ; 15(6): 1059-1075, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502144

RESUMO

Recognition of a pathogen by the plant immune system often triggers a form of regulated cell death traditionally known as the hypersensitive response (HR). This type of cell death occurs precisely at the site of pathogen recognition, and it is restricted to a few cells. Extensive research has shed light on how plant immune receptors are mechanistically activated. However, two central key questions remain largely unresolved: how does cell death zonation take place, and what are the mechanisms that underpin this phenomenon? Consequently, bona fide transcriptional indicators of HR are lacking, which prevents deeper insight into its mechanisms before cell death becomes macroscopic and precludes early or live observation. In this study, to identify the transcriptional indicators of HR we used the paradigmatic Arabidopsis thaliana-Pseudomonas syringae pathosystem and performed a spatiotemporally resolved gene expression analysis that compared infected cells that will undergo HR upon pathogen recognition with bystander cells that will stay alive and activate immunity. Our data revealed unique and time-dependent differences in the repertoire of differentially expressed genes, expression profiles, and biological processes derived from tissue undergoing HR and that of its surroundings. Furthermore, we generated a pipeline based on concatenated pairwise comparisons between time, zone, and treatment that enabled us to define 13 robust transcriptional HR markers. Among these genes, the promoter of an uncharacterized AAA-ATPase was used to obtain a fluorescent reporter transgenic line that displays a strong spatiotemporally resolved signal specifically in cells that will later undergo pathogen-triggered cell death. This valuable set of genes can be used to define cells that are destined to die upon infection with HR-triggering bacteria, opening new avenues for specific and/or high-throughput techniques to study HR processes at a single-cell level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia
2.
Methods Mol Biol ; 2447: 193-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583783

RESUMO

In plants, the hypersensitive response (HR) is a programmed cell death modality that occurs upon recognition of harmful non-self. It occurs at the site of pathogen infection, thus preventing pathogens to live off plant tissue and proliferate. Shedding light on the molecular constituents underlying this process requires robust and quantitative methods that can determine whether plants lacking functional genes are defective in HR execution compared to wild-type controls. In this chapter, we provide two quantitative protocols in which we measure cell death from Arabidopsis thaliana leaves infected with avirulent HR-causing bacterial strains. Firstly, we use trypan blue staining to quantify the stained area of leaves upon bacterial infection using a personalized macro in the Image J (Fiji) software. Alternately, we incorporate an electrolyte leakage protocol in order to measure HR caused by different avirulent bacterial strains at different bacterial titers. We encourage users to perform a combination of both methods when assessing HR in different plant genotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Morte Celular/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Pseudomonas syringae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA