Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
ACS Appl Mater Interfaces ; 16(12): 14799-14808, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478774

RESUMO

Due to their high potential energy storage, magnetite (Fe3O4) nanoparticles have become appealing as anode materials in lithium-ion batteries. However, the details of the lithiation process are still not completely understood. Here, we investigate chemical lithiation in 70 nm cubic-shaped magnetite nanoparticles with varying degrees of lithiation, x = 0, 0.5, 1, and 1.5. The induced changes in the structural and magnetic properties were investigated using X-ray techniques along with electron microscopy and magnetic measurements. The results indicate that a structural transformation from spinel to rock salt phase occurs above a critical limit for the lithium concentration (xc), which is determined to be between 0.5< xc ≤ 1 for Fe3-δO4. Diffraction and magnetization measurements clearly show the formation of the antiferromagnetic LiFeO2 phase. Upon lithiation, magnetization measurements reveal an exchange bias in the hysteresis loops with an asymmetry, which can be attributed to the formation of mosaic-like LiFeO2 subdomains. The combined characterization techniques enabled us to unambiguously identify the phases and their distributions involved in the lithiation process. Correlating magnetic and structural properties opens the path to increasing the understanding of the processes involved in a variety of nonmagnetic applications of magnetic materials.

2.
Nanoscale ; 16(3): 1291-1303, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131194

RESUMO

The magnetic properties of spinel nanoparticles can be controlled by synthesizing particles of a specific shape and size. The synthesized nanorods, nanodots and cubic nanoparticles have different crystal planes selectively exposed on the surface. The surface effects on the static magnetic properties are well documented, while their influence on spin waves dispersion is still being debated. Our ability to manipulate spin waves using surface and defect engineering in magnetic nanoparticles is the key to designing magnonic devices. We synthesized cubic and spherical nanoparticles of a classical antiferromagnetic material Co3O4 to study the shape and size effects on their static and dynamic magnetic proprieties. Using a combination of experimental methods, we probed the magnetic and crystal structures of our samples and directly measured spin wave dispersions using inelastic neutron scattering. We found a weak, but unquestionable, increase in exchange interactions for the cubic nanoparticles as compared to spherical nanoparticle and bulk powder reference samples. Interestingly, the exchange interactions in spherical nanoparticles have bulk-like properties, despite a ferromagnetic contribution from canted surface spins.

3.
Chem Commun (Camb) ; 59(15): 2106-2109, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723213

RESUMO

A manganese(II) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6-: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g-1, rapid uptake OF sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.

4.
J Appl Crystallogr ; 55(Pt 6): 1613-1621, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36570658

RESUMO

The field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for ∼9 nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles. On the basis of the short interparticle distances found here, oriented attachment, i.e. a face-to-face arrangement of the nanocubes, is likely. The unusual field dependence of the interparticle correlations suggests a field-induced structural rearrangement.

5.
Biomacromolecules ; 23(8): 3104-3115, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35786867

RESUMO

Cellulose nanofibrils (CNFs) with carboxylated surface ligands are a class of materials with tunable surface functionality, good mechanical properties, and bio-/environmental friendliness. They have been used in many applications as scaffold, reinforcing, or functional materials, where the interaction between adsorbed moisture and the CNF could lead to different properties and structures and become critical to the performance of the materials. In this work, we exploited multiple experimental methods to study the water movement in hydrated films made of carboxylated CNFs prepared by TEMPO oxidation with two different surface charges of 600 and 1550 µmol·g-1. A combination of quartz crystal microbalance with dissipation (QCM-D) and small-angle X-ray scattering (SAXS) shows that both the surface charge of a single fibril and the films' network structure contribute to the moisture uptake. The films with 1550 µmol·g-1 surface charges take up twice the amount of moisture per unit mass, leading to the formation of nanostructures with an average radius of gyration of 2.1 nm. Via the nondestructive quasi-elastic neutron scattering (QENS), a faster motion is explained as a localized movement of water molecules inside confined spheres, and a slow diffusive motion is found with the diffusion coefficient close to bulk water at room temperature via a random jump diffusion model and regardless of the surface charge in films made from CNFs.


Assuntos
Celulose , Nanofibras , Ácidos Carboxílicos , Celulose/química , Nanofibras/química , Técnicas de Microbalança de Cristal de Quartzo , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
6.
Small ; 17(44): e2104288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34596974

RESUMO

Glycerol electrolysis affords a green and energetically favorable route for the production of value-added chemicals at the anode and H2 production in parallel at the cathode. Here, a facile method for trapping Pt nanoparticles at oxygen vacancies of molybdenum oxide (MoOx ) nanosheets, yielding a high-performance MoOx /Pt composite electrocatalyst for both the glycerol oxidation reaction (GOR) and the hydrogen evolution reaction (HER) in alkaline electrolytes, is reported. Combined electrochemical experiments and theoretical calculations reveal the important role of MoOx nanosheets for the adsorption of glycerol molecules in GOR and the dissociation of water molecules in HER, as well as the strong electronic interaction with Pt. The MoOx /Pt composite thus significantly enhances the specific mass activity of Pt and the kinetics for both reactions. With MoOx /Pt electrodes serving as both cathode and anode, two-electrode glycerol electrolysis is achieved at a cell voltage of 0.70 V to reach a current density of 10 mA cm-2 , which is 0.90 V less than that required for water electrolysis.


Assuntos
Glicerol , Hidrogênio , Catálise , Eletrodos , Eletrólise
7.
Chem Commun (Camb) ; 56(85): 13001-13004, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996921

RESUMO

Self-assembly of cellulose nanocrystals (CNCs) doped with anisotropic gold nanorods (AuNRs) was studied by small-angle neutron scattering. Correlation distances and structured domains were analysed to determine the influence of CNC and AuNR concentration on structuring. The transfer of the nematic structure of CNCs to AuNRs is explained in terms of an entropy-driven evolution from an isotropic to a cholesteric phase, with small nematic domains already present in the "isotropic" phase in equilibrium with the chiral nematic phase.

8.
ACS Appl Mater Interfaces ; 12(37): 41211-41222, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812731

RESUMO

Chemical modification of cellulose is beneficial to produce highly porous lithium-ion battery (LIB) separators, but introduction of high charge density adversely affects its electrochemical stability in a LiNi1/3Mn1/3Co1/3O2 (NMC)/graphite full cell. In this study, the influence of carboxylate functional groups in 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidized cellulose nanofibers (TOCNs) on the electrochemical performances of the LIB separator was investigated. X-ray photoelectron spectroscopy and in operando mass spectrometry measurements were used to elucidate the cause of failure of the batteries containing TOCN separators in the presence and absence of sodium counterions in the carboxylate groups and additives. For the TOCN separator with sodium carboxylate functional groups, it seems that Na deposition is the dominant reason for poor electrochemical stability of the cell thereof. The poor performance of the protonated TOCN separator, attributed to a high amount of gas evolution, is dramatically improved by adding 2 wt % of vinylene carbonate (VC) because of suppressed gas evolution. Unveiling the failure mechanism of the TOCN separators and successively implementing the strategies to improve performance, for example, removing Na, adding VC, and adjusting cycling rates, enable a remarkable cycling performance in the NMC/graphite full cell at ≈2 C (3 mA/cm2) of a fast discharging rate. Despite the aforementioned efforts and compromises required, an increased charge density of the TOCN is beneficial to acquire a mechanically stronger separator. In conclusion, the manufacturing process of cellulose nanofibers needs to be carefully adjusted to acquire a desired separator property. To the best of our knowledge, it is first reported to perform operando gas evolution measurements to systematically investigate the electrochemical stability of nanocellulose as an LIB separator material. The results elucidate not only the challenges for extensive applications of hygroscopic biomaterials for commercial LIBs but also the practical solutions to achieve high electrochemical stability of the materials.

9.
RSC Adv ; 10(21): 12460-12468, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497608

RESUMO

Polymeric supports from renewable resources such as cellulose nanomaterials are having a direct impact on the development of heterogenous sustainable catalysts. Recently, to increase the potentiality of these materials, research has been oriented towards novel functionalization possibilities. In this study, to increase the stability of cellulose nanofiber films as catalytic supports, by limiting the solubility in water, we report the synthesis of new hybrid catalysts (HC) based on silver, gold, and platinum nanoparticles, and the corresponding bimetallic nanoparticles, supported on cellulose nanofibers (CNFs) cross-linked with borate ions. The catalysts were prepared from metal precursors reduced by the CNFs in an aqueous suspension. Metal nanoparticles supported on CNFs with a spherical shape and a mean size of 9 nm were confirmed by TEM, XRD, and SAXS. Functionalized films of HC-CNFs were obtained by adding a borate solution as a cross-linking agent. Solid-state 11B NMR of films with different cross-linking degrees evidenced the presence of four different boron species of which the bis-chelate is responsible for the cross-linking of the CNFs. Also, it may be concluded that the bis-chelate and the mono-chelates modify the microstructure of the film increasing the water uptake and enhancing the catalytic activity in the reduction of 4-nitrophenol.

10.
Nanoscale ; 11(41): 19278-19284, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31312823

RESUMO

Inspired by the Bogolanfini dyeing technique, we report how flexible nanofibrillated cellulose (CNF) films can be functionalized and patterned by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions with tunable colors. Molecular dynamics simulations show that gallic acid (GA) and ellagic acid (EA) rapidly adsorb and assemble on the CNF surface, and atomic force microscopy confirms that nanosized GA assemblies cover the surface of the CNF. CNF films were patterned with tannin-metal ion nanoparticles by an in-fibre reaction between the pre-impregnated tannin and the metal ions in the printing ink. Spectroscopic studies show that the FeIII/II ions interact with GA and form surface-bound, stable GA-FeIII/II nanoparticles. The functionalization and patterning of CNF films with metal ion-hydrolyzable tannin nanoparticles is a versatile route to functionalize films based on renewable materials and of interest for biomedical and environmental applications.

11.
Nanomaterials (Basel) ; 9(7)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336855

RESUMO

Maghemite nanoparticles with high surface area were obtained from the dehydroxylation of lepidocrocite prismatic nanoparticles. The synthesis pathway from the precursor to the porous maghemite nanoparticles is inexpensive, simple and gives high surface area values for both lepidocrocite and maghemite. The obtained maghemite nanoparticles contained intraparticle and interparticle pores with a surface area ca. 30 × 103 m2/mol, with pore volumes in the order of 70 cm3/mol. Both the surface area and pore volume depended on the heating rate and annealing temperature, with the highest value near the transformation temperature (180-250 °C). Following the transformation, in situ X-ray diffraction (XRD) allowed us to observe the temporal decoupling of the decomposition of lepidocrocite and the growth of maghemite. The combination of high-angle annular dark-field imaging using scanning transmission electron microscopy (HAADF-STEM) and surface adsorption isotherms is a powerful approach for the characterization of nanomaterials with high surface area and porosity.

12.
Langmuir ; 35(10): 3600-3606, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30730750

RESUMO

The ability to probe the assembly, gelation, and helicoidal consolidation of cellulose nanocrystal (CNC) dispersions at high concentrations can provide unique insight into the assembly and can assist optimized manufacturing of CNC-based photonic and structural materials. In this Feature Article, we review and discuss the concentration dependence of the structural features, characterized by the particle separation distance and the helical pitch, at CNC concentrations ( c) that range from the isotropic state, over the biphasic range, to the fully liquid crystalline state. The structure evolution of CNC dispersions probed by time-resolved small-angle X-ray scattering during evaporation-induced assembly highlighted the importance of gelation and consolidation at high concentrations. We briefly discuss how the homogeneity of helicoidal nanostructures in dry CNC films can be improved and present an outlook for future work.

13.
Langmuir ; 35(6): 2289-2302, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30672300

RESUMO

In this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1-5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration. As expected, rotational and translational diffusion coefficients generally decreased with increasing concentration. However, the translational parallel diffusion coefficient was found to show a local maximum at the onset of the isotropic-to-nematic phase transition. This is attributed to the increased available space for rods to move along their longitudinal axis upon alignment. This increased parallel diffusion coefficient thus confirms the general idea that rodlike particles gain translational entropy upon alignment while paying the price for losing rotational degrees of freedom. Once the concentration increases further, diffusion becomes more hindered even in the aligned regions due to a reduction in the rod separation distance. This leads once again to a decrease in translational diffusion coefficients. Furthermore, the relaxation rate for fast mode translational diffusion (parallel to the long particle axis) exhibited two regimes of relaxation behavior at concentrations where significant alignment of the rods is measured. We attribute this unusual dispersive behavior to two length scales: one linked to the particle length (at large wavevector q) and the other to a twist fluctuation correlation length (at low wavevector q) along the cellulose nanocrystal rods that is of a larger length when compared to the actual length of rods and could be linked to the size of aligned domains.

14.
Nanoscale ; 10(48): 23157-23163, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30515496

RESUMO

The formation of nematically-ordered cellulose nanofiber (CNF) suspensions with an order parameter fmax≈ 0.8 is studied by polarized optical microscopy, small-angle X-ray scattering (SAXS), and rheological measurements as a function of CNF concentration. The wide range of CNF concentrations, from 0.5 wt% to 4.9 wt%, is obtained using osmotic dehydration. The rheological measurements show a strong entangled network over all the concentration range whereas SAXS measurements indicate that at concentrations >1.05 wt% the CNF suspension crosses an isotropic-anisotropic transition that is accompanied by a dramatic increase of the optical birefringence. The resulting nanostructures are modelled as mass fractal structures that converge into co-existing nematically-ordered regions and network-like regions where the correlation distances decrease with concentration. The use of rapid, upscalable osmotic dehydration is an effective method to increase the concentration of CNF suspensions while partly circumventing the gel/glass formation. The facile formation of highly ordered fibers can result in materials with interesting macroscopic properties.

15.
Nanoscale ; 10(38): 18113-18118, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30238947

RESUMO

Assembly of bio-based nano-sized particles into complex architectures and morphologies is an area of fundamental interest and technical importance. We have investigated the assembly of sulfonated cellulose nanocrystals (CNC) dispersed in a shrinking levitating aqueous drop using time-resolved small angle X-ray scattering (SAXS). Analysis of the scaling of the particle separation distance (d) with particle concentration (c) was used to follow the transition of CNC dispersions from an isotropic state at 1-2 vol% to a compressed nematic state at particle concentrations above 30 vol%. Comparison with SAXS measurements on CNC dispersions at near equilibrium conditions shows that evaporation-induced assembly of CNC in large levitating drops is comparable to bulk systems. Colloidal states with d vs. c scalings intermediate between isotropic dispersions and unidirectional compression of the nematic structure could be related to the biphasic region and gelation of CNC. Nanoscale structural information of CNC assembly up to very high particle concentrations can help to fabricate nanocellulose-based materials by evaporative methods.

16.
ACS Appl Mater Interfaces ; 9(43): 37712-37720, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972727

RESUMO

Carboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO4 electrodes. The results show that the CNF with high charge density had shorter fiber lengths compared with those of CNF with low charge density, as observed with atomic force microscopy. Also, CNF processed with a large number of passes in the homogenizer showed a better fiber dispersibility, as observed from rheological measurements. The electrodes fabricated with highly charged CNF exhibited the best mechanical and electrochemical properties. The CNF at the highest charge density (1550 µmol g-1) and lowest degree of homogenization (3 + 3 passes in the homogenizer) achieved the overall best performance, including a high Young's modulus of approximately 311 MPa and a good rate capability with a stable specific capacity of 116 mAh g-1 even up to 1 C. This work allows a better understanding of the influence of the processing parameters of CNF on their performance as binder for flexible electrodes. The results also contribute to the understanding of the optimal processing parameters of CNF to fabricate other materials, e.g., membranes or separators.

17.
Sci Rep ; 7(1): 2802, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584236

RESUMO

Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent.

18.
Nano Lett ; 16(11): 6838-6843, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27779885

RESUMO

Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.

19.
ACS Appl Mater Interfaces ; 8(34): 22477-83, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27502034

RESUMO

The exchange bias properties of Co/CoO coaxial core/shell nanowires were investigated with cooling and applied fields perpendicular to the wire axis. This configuration leads to unexpected exchange-bias effects. First, the magnetization value at high fields is found to depend on the field-cooling conditions. This effect arises from the competition between the magnetic anisotropy and the Zeeman energies for cooling fields perpendicular to the wire axis. This allows imprinting predefined magnetization states to the antiferromagnetic (AFM) shell, as corroborated by micromagnetic simulations. Second, the system exhibits a high-field magnetic irreversibility, leading to open hysteresis loops attributed to the AFM easy axis reorientation during the reversal (effect similar to athermal training). A distinct way to manipulate the high-field magnetization in exchange-biased systems, beyond the archetypical effects, was thus experimentally and theoretically demonstrated.

20.
Nano Lett ; 16(8): 5068-73, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27383904

RESUMO

The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA