Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38979162

RESUMO

The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.

2.
Physiol Rep ; 12(11): e16048, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872467

RESUMO

Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.


Assuntos
Células Endoteliais , Inflamação , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Inflamação/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Adulto , Galantamina/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Tirosina/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacologia , Pessoa de Meia-Idade , Molécula 1 de Adesão Intercelular/metabolismo , Lipídeos/farmacologia
3.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895458

RESUMO

Background: Breast cancer is the most common malignant tumor in women worldwide, and disproportionately affects Sub-Saharan Africa compared to high income countries. The global disease burden is growing, with Sub-Saharan Africa reporting majority of the cases. In Kenya, breast cancer is the most commonly diagnosed cancer, with an annual incidence of 7,243 new cases in 2022, representing 25.5% of all reported cancers in women. Evidence suggests that women receiving breast cancer treatment are at a greater risk of developing hypertension than women without breast cancer. Hypertension prevalence has been on the rise in SSA, with poor detection, treatment and control. The JAK-STAT signaling is activated in hormone receptor-positive breast tumors, leading to inflammation, cell proliferation, and treatment resistance in cancer cells. We sought to understand the association between the expression of JAK-STAT Pathway genes and hypertension among Kenyan women diagnosed with breast cancer. Methods: Breast tumor and non-tumor tissues were acquired from patients with a pathologic diagnosis of invasive breast carcinoma. RNA was extracted from fresh frozen tumor and adjacent normal tissue samples of 23 participants who had at least 50% tumor after pathological examination, as well as their corresponding adjacent normal samples. Differentially expressed JAK-STAT genes between tumor and normal breast tissues were assessed using the DESEq2 R package. Pearson correlation was used to assess the correlation between differentially expressed JAK-STAT genes and participants' blood pressure, heart rate, and body mass index (BMI). Results: 11,868 genes were differentially expressed between breast tumor and non-tumor tissues. Eight JAK-STAT genes were significantly dysregulated (Log2FC ≥ 1.0 and an Padj ≤ 0.05), with two genes (CISH and SCNN1A) being upregulated. Six genes (TGFBR2, STAT5A, STAT5B, TGFRB3, SMAD9, and SOCS2) were downregulated. We identified STAT5A and SOCS2 genes to be significantly correlated with elevated systolic pressure and heart rate, respectively. Conclusions: Our study provides insights underlying the molecular mechanisms of hypertension among Kenyan women diagnosed with breast cancer. Understanding these mechanisms may help develop targeted treatments that may improve health outcomes of Kenyan women diagnosed with breast cancer. Longitudinal studies with larger cohorts will be needed to validate our results.

4.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915644

RESUMO

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.

5.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915603

RESUMO

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS: We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1. Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION: Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP.

6.
Circ Res ; 134(10): 1276-1291, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623763

RESUMO

BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.


Assuntos
Bortezomib , Linfócitos T CD8-Positivos , Células Dendríticas , Hipertensão , Complexo de Endopeptidases do Proteassoma , Animais , Masculino , Camundongos , Angiotensina II , Bortezomib/farmacologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Hipertensão/metabolismo , Hipertensão/imunologia , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia
7.
Cureus ; 16(2): e53432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435221

RESUMO

BACKGROUND: The clinical features and severity of coronavirus disease 2019 (COVID-19) vary between patients and countries. Patients with certain conditions are predisposed to poor outcomes compared with those without medical conditions, such as diabetes, dementia, and hypertension (HTN). METHODS: The aim of this retrospective study was to assess factors associated with higher mortality in patients with COVID-19 infections and to identify the reason for hospital admission in these patients. The study was performed on patients admitted between 1 and 31 March 2020. Data collection was done retrospectively from electronic medical records. RESULTS: There were 269 patient admissions during this period, of which 147 were included in this audit. The mean age of COVID-19-positive patients was 62.8 years and 65.9 years for COVID-19-negative patients during this period. Forty-seven patients requiring hospital admission were COVID-19 positive and 93 were COVID-19 negative. There were no COVID-19 swabs in the seven patients included in the audit. Approximately 50% of the COVID-19-positive patients presented with fever and shortness of breath (sob), followed by dyspnea and cough (seven patients). The most common comorbidity was HTN, followed by type 2 diabetes mellitus (T2DM) and ischemic heart disease (IHD). The survival rate was 72.3% in COVID-19-positive patients and 80% in COVID-19-negative patients. The average length of stay was 14.4 days for COVID-19-positive survivors compared to 7.8 days for COVID-19-negative survivors. Most patients who tested positive for COVID-19 infection received oseltamivir vaccination and antibiotics. The presence of HTN, diabetes mellitus (DM), age, and organ failure was associated with a high mortality risk. CONCLUSION: Our study supports the findings of previous studies that diabetes, HTN, coronary artery disease, old age, and organ failure were associated with high mortality in patients admitted to hospitals with COVID-19 infections.

8.
Front Chem ; 12: 1291230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476652

RESUMO

Background: Ulcerative colitis is a chronic immune-mediated inflammatory bowel disease that involves inflammation and ulcers of the colon and rectum. To date, no definite cure for this disease is available. Objective: The objective of the current study was to assess the effect of Calliandra haematocephala on inflammatory mediators and oxidative stress markers for the exploration of its anti-ulcerative colitis activity in rat models of acetic acid-induced ulcerative colitis. Methods: Methanolic and n-hexane extracts of areal parts of the plant were prepared by cold extraction method. Phytochemical analysis of both extracts was performed by qualitative analysis, quantitative methods, and high-performance liquid chromatography (HPLC). Prednisone at 2 mg/kg dose and plant extracts at 250, 500, and 750 mg/kg doses were given to Wistar rats for 11 days, which were given acetic acid on 8th day through the trans-rectal route for the induction of ulcerative colitis. A comparison of treatment groups was done with a normal control group and a colitis control group. To evaluate the anti-ulcerative colitis activity of Calliandra haematocephala, different parameters such as colon macroscopic damage, ulcer index, oxidative stress markers, histopathological examination, and mRNA expression of pro and anti-inflammatory mediators were evaluated. mRNA expression analysis was carried out by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Results: The phytochemical evaluation revealed polyphenols, flavonoids, tannins, alkaloids, and sterols in both extracts of the plant. Results of the present study exhibited that both extracts attenuated the large bowel inflammation and prevented colon ulceration at all tested doses. Macroscopic damage and ulcer scoreswere significantly decreased by both extracts. Malondialdehyde (MDA) levels and nitrite/nitrate concentrations in colon tissues were returned to normal levels while superoxide dismutase (SOD) activity was significantly improved by all doses. Histopathological examination exhibited that both extracts prevented the inflammatory changes, cellular infiltration, and colon thickening. Gene expression analysis by RT-qPCR revealed the downregulation of pro-inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) whereas the anti-inflammatory cytokines including Interleukin-4 (IL-4) and Interleukin-10 (IL-10) were found to be upregulated in treated rats. Conclusion: It was concluded based on study outcomes that methanolic and n-hexane extracts of Calliandra haematocephala exhibited anti-ulcerative colitis activity through modulation of antioxidant defense mechanisms and the immune system. In this context, C. haematocephala can be considered as a potential therapeutic approach for cure of ulcerative colitis after bioassay-directed isolation of bioactive phytochemicals and clinical evaluation.

9.
Org Lett ; 26(10): 2039-2044, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486498

RESUMO

We report the synthesis of acyl hydrazides from acylsilanes in the presence of visible light without the aid of additives or transition metals. Acylsilanes underwent [1,2]-Brook rearrangement to generate the nucleophilic siloxycarbenes which on further addition to N═N of azodicarboxylates produced the acyl hydrazides. Control experiments indicate that the reaction proceeds through the singlet carbene intermediate. Transformation of the acyl hydrazide functionality to other functional groups was demonstrated, including the synthesis of the drug candidate Moclobemide.

10.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474257

RESUMO

Extracorporeal photopheresis (ECP) is an apheresis procedure that is conventionally used as a first-line treatment for cutaneous and leukemic subtypes of T-cell lymphoma, such as Sezary's syndrome and mycosis fungoides. Over the past three decades, its immunotherapeutic properties have been tested on a variety of autoimmune conditions, including many dermatologic diseases. There is ample evidence of ECP's ability to modify leukocytes and alter cytokine production for certain dermatologic diseases that have been refractory to first-line treatments, such as atopic dermatitis. However, the evidence on the efficacy of ECP for the treatment of these dermatologic diseases is unclear and/or lacks sufficient evidence. The purpose of this paper is to review the literature on the utilization and clinical efficacy of ECP in the treatment of several [autoimmune] dermatologic diseases and discuss its applications, guidelines, recommendations, and future implementation for dermatologic diseases.


Assuntos
Remoção de Componentes Sanguíneos , Micose Fungoide , Fotoferese , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Fotoferese/métodos , Neoplasias Cutâneas/patologia , Micose Fungoide/patologia , Remoção de Componentes Sanguíneos/métodos , Síndrome de Sézary/terapia
11.
J Ethnopharmacol ; 326: 117884, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350502

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY: This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS: In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS: EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κß and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS: Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.


Assuntos
Artrite Experimental , Opuntia , Ratos , Animais , Citocinas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Glutaminase , Piroxicam/uso terapêutico , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Etanol/química , Inflamação/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Flavonoides/uso terapêutico
12.
Hypertension ; 81(3): 436-446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164753

RESUMO

Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1ß, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.


Assuntos
Hipertensão , Nefropatias , Animais , Humanos , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio , Nefropatias/complicações , Pressão Sanguínea/fisiologia , Inflamação , Citocinas , Interleucina-6
13.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675576

RESUMO

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Assuntos
Hipertensão , Lipídeos , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Eicosanoides , Pressão Sanguínea/fisiologia
14.
Curr Gene Ther ; 24(2): 122-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37861022

RESUMO

BACKGROUND: MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD. OBJECTIVE: The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD's pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-ß, high mobility group protein (HMGB1), and IL-1ß, NMDA receptor signalling, cholinergic signalling, etc. Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment. RESULTS: The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating ß-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA. CONCLUSION: This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.


Assuntos
Doença de Alzheimer , Doença de Huntington , MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Huntington/genética
15.
Ann Med Surg (Lond) ; 85(12): 5899-5907, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098592

RESUMO

Introduction: The non-prescription antibiotics dispensing (NPAD) from pharmacies is on the rise in low- and middle-income countries, which contributes to the emergence of antimicrobial resistance (AMR). This study was conducted with the objective to determine the community pharmacy personnel's perspectives on NPAD and its implications for AMR. Methods: A questionnaire-based cross-sectional survey was conducted in Pakistan among 336 pharmacies. The data were analyzed using SPSS v21 and MedCalc for Windows v12.3.0. Modified Bloom's cut-off point was utilized to categorize the participants' overall knowledge, attitude, and practice. For univariable logistic regression analyses, odds ratio (OR) was calculated at 95% confidence interval (CI). For multivariable logistic regression analyses, adjusted OR was calculated at 95% CI. Spearman's rank correlation coefficient test was used to assess the relationships among knowledge, attitude, and/or practice scores. Results: The majority of the respondents were staff pharmacists (45.5%). About four-fifths (78.9%) and half (50.9%) of the participants demonstrated moderate to good knowledge and practice, respectively. However, about only one-third (33.1%) had a moderate to good attitude. Staff pharmacists had higher odds of moderate to good knowledge (OR: 2.4, 95% CI: 1.2-4.7) and practice (OR: 2.3, 95% CI: 1.4-3.8). Total knowledge and practice (Spearman's ρ: 0.280; P <0.001) and total attitude and practice (Spearman's ρ: 0.299; P <0.001) scores were significantly correlated. Conclusion: The qualified pharmacists had satisfactory knowledge, attitude, and practices toward antibiotics. However, non-pharmacist staff lacked knowledge and had probable NPAD practice, which has a negative impact on public health. Regular refresher training, seminars, and strict enforcement of rules and regulations are essential.

16.
Aging Cell ; 22(12): e14009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37960952

RESUMO

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.


Assuntos
Imageamento Tridimensional , Membranas Associadas à Mitocôndria , Camundongos , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
17.
Inflammopharmacology ; 31(6): 3281-3301, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864683

RESUMO

Solanum nigrum L. is a popular traditional medicine for various inflammatory conditions including rheumatism and joint pain. The current study aimed to evaluate the anti-arthritic mechanism of Solanum nigrum L. Four extracts were prepared using n-hexane, methanol, chloroform, and water. The anti-nociceptive and anti-inflammatory activity was carried out with 100, 200, and 300 mg/kg body wt. PO of each extract by the hot plate and carrageenan-induced paw oedema methods, respectively. The anti-arthritic study was performed with chloroform and aqueous extracts (300 mg/kg) in complete Freund's adjuvant (CFA)-induced arthritis. Paw size (mm), ankle joint diameter (mm), and latency time (sec) were recorded on day 0 and every 4th day till 28 days. The hematological, inflammatory, and oxidative biomarkers were estimated. Results showed that significant analgesia (p < 0.05) and reduction in paw inflammation were achieved with all extracts. The highest percent inhibition in Carrageenan-induced inflammation was achieved with 300 mg/kg of chloroform (72.19%) and aqueous (71.30%) extracts, respectively. In the CFA model, both extracts showed a significant reduction in paw size and ankle joint diameter (p < 0.05). The RT-qPCR analysis revealed the upregulation of interleukin-4 and interleukin-10, and down-expression of interleukin-1ß, interleukin-6, tumor necrosis factor-α, cycloxygenase-2, nuclear factor-κB, prostaglandin E synthase 2, and interferon-γ. A significant increase in superoxide dismutase, catalase, and glutathione levels was observed. Hence, it is concluded that Solanum nigrum L. leaf extracts regulate the expression of inflammatory markers and improve oxidative stress resulting in the attenuation of CFA-induced arthritis.


Assuntos
Artrite Experimental , Solanum nigrum , Animais , Citocinas/metabolismo , Carragenina , Antioxidantes/farmacologia , Solanum nigrum/metabolismo , Extratos Vegetais/farmacologia , Adjuvante de Freund , Clorofórmio/efeitos adversos , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Inflamação/tratamento farmacológico
18.
Org Biomol Chem ; 21(35): 7062-7078, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610724

RESUMO

This comprehensive review article discussed the reactivity of carbenes with boronic acid derivatives for the one-pot synthesis of diarylmethanes, difluoromethylated arenes, aryl and alkyl boron compounds, arylacetic acid derivatives, furan derivatives, and many other compounds. We have summarized the arylation, vinylation, and alkylation of carbenes utilizing various transition metals, viz. palladium, rhodium, copper, and platinum, for the construction of carbon-carbon bonds, carbon-boron bonds, and beyond through the cross-coupling strategy. The reason for the increasing popularity of these novel methodologies is their application in the synthesis and late-stage functionalization of biologically active compounds and natural products. Notably, organoboron compounds are exemplified as versatile synthetic intermediates for constructing various bonds.

20.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37383945

RESUMO

Isolevuglandins (isoLGs) are lipid aldehydes that form in the presence of reactive oxygen species (ROS) and drive immune activation. We found that isoLG-adducts are presented within the context of major histocompatibility complexes (MHC-I) by an immunoproteasome dependent mechanism. Pharmacologic inhibition of LMP7, the chymotrypsin subunit of the immunoproteasome, attenuates hypertension and tissue inflammation in the angiotensin II (Ang II) model of hypertension. Genetic loss of function of all immunoproteasome subunits or conditional deletion of LMP7 in dendritic cell (DCs) or endothelial cells (ECs) attenuated hypertension, reduced aortic T cell infiltration, and reduced isoLG-adduct MHC-I interaction. Furthermore, isoLG adducts structurally resemble double-stranded DNA and contribute to the activation of STING in ECs. These studies define a critical role of the immunoproteasome in the processing and presentation of isoLG-adducts. Moreover they define a role of LMP7 as a regulator of T cell activation and tissue infiltration in hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA