Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
Ecotoxicol Environ Saf ; 280: 116532, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850696

RESUMO

Air pollution, a pervasive environmental threat that spans urban and rural landscapes alike, poses significant risks to human health, exacerbating respiratory conditions, triggering cardiovascular problems, and contributing to a myriad of other health complications across diverse populations worldwide. This article delves into the multifarious impacts of air pollution, utilizing cutting-edge research methodologies and big data analytics to offer a comprehensive overview. It highlights the emergence of new pollutants, their sources, and characteristics, thereby broadening our understanding of contemporary air quality challenges. The detrimental health effects of air pollution are examined thoroughly, emphasizing both short-term and long-term impacts. Particularly vulnerable populations are identified, underscoring the need for targeted health risk assessments and interventions. The article presents an in-depth analysis of the global disease burden attributable to air pollution, offering a comparative perspective that illuminates the varying impacts across different regions. Furthermore, it addresses the economic ramifications of air pollution, quantifying health and economic losses, and discusses the implications for public policy and health care systems. Innovative air pollution intervention measures are explored, including case studies demonstrating their effectiveness. The paper also brings to light recent discoveries and insights in the field, setting the stage for future research directions. It calls for international cooperation in tackling air pollution and underscores the crucial role of public awareness and education in mitigating its impacts. This comprehensive exploration serves not only as a scientific discourse but also as a clarion call for action against the invisible but insidious threat of air pollution, making it a vital read for researchers, policymakers, and the general public.

2.
Heliyon ; 10(9): e29698, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707394

RESUMO

Enormous consumption of fossil fuel resources has risked energy accessibility in the upcoming years. The price fluctuation and depletion rate of fossil fuels instigate the urgent need for searching their reliable substitute. The current study tries to address these issues by presenting butanol as a replacement for gasoline in SI engines at various speeds and loading conditions. The emission and performance parameters were ascertained for eight distinct butanol-gasoline fuel blends. The oxygenated butanol substantially increases engine efficiency and boosts power with lower fuel consumption. The carbon emissions were also observed to be lower in comparison with gasoline. Furthermore, the Artificial Intelligence (AI) approach was used in predicting engine performance running on the butanol blends. The correlation coefficients for the data training, validation, and testing were found to be 0.99986, 0.99942, and 0.99872, respectively. It was confirmed that the ANN predicted results were in accordance with the established statistical criteria. ANN was paired with Response Surface Methodology (RSM) technique to comprehend the influence of the sole design parameters along with their statistical interactions controlling the responses. Similarly, the R2 value of responses in case of RSM were close to unity and mean relative errors (MRE) were confined under specified range. A comparative study between ANN and RSM models unveiled that the ANN model should be preferred. Therefore, a joint utilization of the RSM and ANN can be more effective for reliable statistical interactions and predictions.

3.
Nat Prod Res ; : 1-5, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712509

RESUMO

Pistacia chinensis is used as a decorative tree and currently studied as a source of biofuels. Besides, its parts and extracts are endowed with several therapeutic uses which have been widely explored in traditional medicine and that are related to its rich composition in phytochemicals. Molecular docking and enzymatic inhibition tests were used to study the activity of eriodictyol, a flavonoid extracted from the barks of P. chinensis, against ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and aldose reductase (ALR2). The compound was highlighted as a micromolar inhibitor in vitro (IC50 = 263.76 ± 1.32 µM and 4.21 ± 0.94 µM, respectively) and docking showed that eriodictyol efficiently targets the binding sites of the enzymes. In conclusion, this study unveils the potential of eriodictyol on enzymes that are involved in immunostimulation and in complications of diabetes mellitus.

6.
PLoS One ; 19(5): e0296255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701093

RESUMO

Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.


Assuntos
Dano ao DNA , Ivermectina , Ivermectina/toxicidade , Ivermectina/farmacologia , Animais , Dano ao DNA/efeitos dos fármacos , Linhagem Celular , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Testes para Micronúcleos , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Ensaio Cometa , Mutagênicos/toxicidade , Antiparasitários/farmacologia , Antiparasitários/toxicidade , Rim/efeitos dos fármacos , Rim/citologia
7.
J Agric Food Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814005

RESUMO

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.

8.
Biochem Genet ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816671

RESUMO

MicroRNAs (miRNAs) are short, endogenously encoded small RNAs, 18-26 nucleotides in length, which can posttranscriptionally regulate gene expression through translation inhibition or endonucleolytic cleavage. The muskmelon is one of the most widely cultivated fruits in the Cucurbitaceae family. Despite its significance, only 120 miRNAs from different families have been reported in muskmelon. In this study, we aimed to expand this knowledge base by predicting 40 new miRNAs in muskmelon using a spectrum of genomic-based tools. Precursor and mature sequences were obtained from microRNA registry database as reference and analyzed via the basic local alignment search tool (Blastn) for ESTs identification. After removing the non-coding sequences, the remaining candidate sequences were analyzed using MFOLD to generate secondary structures for the newly predicted miRNAs. Additionally, the predicted muskmelon miRNAs were validated using a set of five randomly chosen primers and RT-PCR. Through gene ontology (GO) analysis, we identified 89 targets associated with newly predicted muskmelon miRNAs. Transcription factor-coding genes play a crucial role in plant growth and development. Additionally, the miR4249 has been found to have the same targets in muskmelon that have been linked to cell signaling and transcription factors. The identified targets are integral for diverse biological processes including plant growth, development, metabolism, aging, disease resistance, and resistance to environmental stresses, such as salt, cold, and oxidative stress. As a result, the outcomes of this study demonstrate that this mechanism not only contributes to the production of a higher quality crop but also enhances overall production.

9.
J Xenobiot ; 14(2): 634-650, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38804290

RESUMO

Soil pollution caused by heavy metal(oid)s has generated great concern worldwide due to their toxicity, persistence, and bio-accumulation properties. To assess the baseline data, the heavy metal(oid)s, including manganese (Mn), iron (Fe), Cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), mercury (Hg), chromium (Cr), and cadmium (Cd), were evaluated in surface soil samples collected from the farmlands of Grand Forks County, North Dakota. Samples were digested via acid mixture and analyzed via inductively coupled plasma mass spectrometry (ICP MS) analysis to assess the levels, ecological risks, and possible sources. The heavy metal(oid) median levels exhibited the following decreasing trend: Fe > Mn > Zn > Ni > Cr > Cu > Pb > Co > As > Cd > Hg. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested the main lithogenic source for the studied metal(oid)s. Metal(oid) levels in the current investigation, except Mn, are lower than most of the guideline values set by international agencies. The contamination factor (Cf), geo accumulation index (Igeo) and enrichment factor (EF) showed considerable contamination, moderate contamination, and significant enrichment, respectively, for As and Cd on median value basis. Ecological risk factor (Er) results exhibited low ecological risk for all studied metal(oid)s except Cd, which showed considerable ecological risk. The potential ecological risk index (PERI) levels indicated low ecological risk to considerable risk. Overall, the results indicate the accumulation of As and Cd in the study area. The high nutrients of the soils potentially affect their accumulation in crops and impact on consumers' health. This drives the impetus for continued environmental monitoring programs.

10.
Medicine (Baltimore) ; 103(15): e37787, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608068

RESUMO

Tuberculosis (TB) remains a serious problem for public health and a leading cause of death after COVID-19 and superior to even HIV/AIDS. It is a social health issue and can cause stigma and economic loss as the person cannot perform professionally due to lethargy caused by disease. It is a retrospective study done on data from National TB program Muzaffarabad chapter. The details were noted on SPSS and analysis was done to find important demographic characteristics. The total number of patients was 3441; among which 48.76% were males. Most of them (81.11%) belonged to the Muzaffarabad division of Azad Jammu and Kahmir (AJK). The microbiologically or culture positive cases were 440. Rifampicin resistance was present in 147 cases, further categorized as high (n = 143), very high (n = 3), or true positive (n = 1) resistance. Muti drug resistance was found in 19 cases. The microscopy culture is more sensitive (AUC = 0.511) than MTB/RIF or serology (AUC = 0.502) according to ROC. The rate of positive smear results is not very satisfactory in the present study as it cannot detect dormant or latent cases. There is a need to establish more sensitive tests for detection of cases and more research to combat the disease.


Assuntos
Tuberculose , Masculino , Humanos , Feminino , Estudos Retrospectivos , Paquistão/epidemiologia , Prevalência , Tuberculose/epidemiologia , Rifampina
11.
Heliyon ; 10(8): e29695, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660259

RESUMO

Cotton bollworm (Helicoverpa armigera) is a highly polyphagous, widely prevalent, and persistent Old World insect pest that affects numerous important crops that are directly consumed by people, including tomato, cotton, pigeon pea, chickpea, rice, sorghum, and cowpea. Insects do not synthesize steroids but obtain them from their diet. Inhibition of dietary uptake of steroids by insects is a potentially effective insecticidal mechanism that should not be toxic to humans and other mammals, who synthesize their steroids. Ten curcumin derivatives were tested against H. armigera sterol carrier protein-2 (HaSCP-2) for their potential as insecticidal agents. Curcumin derivatives were initially docked at the binding site of HaSCP-2 to determine their binding affinities and plausible binding modes. The binding modes predominantly show hydrophobic interactions of derivatives with Phe53, Phe110, and Phe89 as core interacting residues in the active site. Validation of in silico results was carried out by performing a fluorescence binding and displacement assay to determine the binding affinities of curcumin derivatives. Among a collection of curcumin derivatives tested, Cur10 showed the lowest IC50 value of 9.64 µM, while Cur07 was 19.86 µM, and Cur06 was 20.79 µM. There was a significant negative correlation between the ability of the curcumin derivatives tested to displace the fluorescent probe from the sterol binding site of HaSCP-2 and to inhibit Sf9 insect cell growth in culture, which is consistent with the curcumin derivatives acting by the novel mechanism of blocking sterol uptake. Then molecular dynamics simulation studies validated the predicted binding modes and the interactions of curcumin derivatives with HaSCP-2 protein. In conclusion, these studies support the potential use of curcumin derivatives as insecticidal agents.

12.
Entropy (Basel) ; 26(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667884

RESUMO

Complex systems are prevalent in various disciplines encompassing the natural and social sciences, such as physics, biology, economics, and sociology. Leveraging data science techniques, particularly those rooted in artificial intelligence and machine learning, offers a promising avenue for comprehending the intricacies of complex systems without necessitating detailed knowledge of underlying dynamics. In this paper, we demonstrate that multiscale entropy (MSE) is pivotal in describing the steady state of complex systems. Introducing the multiscale entropy dynamics (MED) methodology, we provide a framework for dissecting system dynamics and uncovering the driving forces behind their evolution. Our investigation reveals that the MED methodology facilitates the expression of complex system dynamics through a Generalized Nonlinear Schrödinger Equation (GNSE) that thus demonstrates its potential applicability across diverse complex systems. By elucidating the entropic underpinnings of complexity, our study paves the way for a deeper understanding of dynamic phenomena. It offers insights into the behavior of complex systems across various domains.

13.
J Fluoresc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602591

RESUMO

Fluorescence spectroscopy has been employed for the compositional analysis of flaxseed oil, detection of its adulteration and investigation of the thermal effects on its molecular composition. Excitation wavelengths from 320 to 420 nm have been used to explore the valued ingredients in flaxseed oil. The emission bands of flaxseed oil centred at 390, 414, 441, 475, 515 and 673/720 nm represent vitamin K, isomers of vitamin E, carotenoids and chlorophylls, which can be used as a marker for quality analysis. Due to its high quality, it is highly prone to adulteration and in this study, detection of its adulteration with canola oil is demonstrated by applying principal component analysis. Moreover, the effects of temperature on the molecular composition of cold pressed flaxseed oil has been explored by heating them at cooking temperatures of 100, 110, 120, 130, 140, 150, 160, 170 and 180 °C, each for 30 min. On heating, the deterioration of vitamin E, carotenoids and chlorophylls occurred with an increase in the oxidation products. However, it was found that up to 140 °C, flaxseed oil retains much of its natural composition whereas up to 180 oC, it loses much of its valuable ingredients along with increase of oxidized products.

14.
J Fluoresc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625572

RESUMO

This study was based on the development of surface-based photoluminescence sensor for metal detection, quantification, and sample purification employing the solid sensory chip having the capability of metal entrapment. The Co(II), Cu(II) and Hg(II) sensitive fluorescence sensor (TP) was first synthesized and characterized its sensing abilities towards tested metal ions by using fluorescence spectral investigation while the synthesis and complexation of the receptor was confirmed by the chromogenic, optical, spectroscopic and spectrometric analysis. Under optical investigation, the ligand solution exhibited substantial chromogenic changes as well as spectral variations upon reacting with copper, cobalt, and mercuric ions, while these behaviors were not seen for the rest of tested metallic ions i.e., Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+, and Al3+. These colorimetric alterations and spectral shifting could potentially be employed to detect and quantify these specific metal ions. After the establishment of the ligand's selective complexation ability towards selected metals, it was fabricated over the substituted porous silicon surface (FPS) keeping in view of the development of surface-based photoluminescence sensor (TP-FPS) for the selected metal sensation and entrapment to purify the sample just be putting off the metal entrapped sensory solid chip. Surface characterization and ligand fabrication was inspected by plan and cross sectional electron microscopic investigations, vibrational and electronic spectral analysis. The sensitivity of the ligand (TP) in the solution phase metal discrimination was determined by employing the fluorescence titration analysis of the ligand solution after progressive induction of Co2+, Cu2+, and Hg2+, which afford the detection limit values of 2.14 × 10- 8, 3.47 × 10- 8 and 3.13 × 10- 3, respectively. Concurrently, photoluminescence titration of the surface fabricated sensor (TP-FPS) revealed detection limit values of 3.14 × 10- 9, 7.43 × 10- 9, and 8.21 × 10- 4, respectively, for the selected metal ions.

15.
BMC Complement Med Ther ; 24(1): 167, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649994

RESUMO

Tanacetum falconeri is a significant flowering plant that possesses cytotoxic, insecticidal, antibacterial, and phytotoxic properties. Its chemodiversity and bioactivities, however, have not been thoroughly investigated. In this work, several extracts from various parts of T. falconeri were assessed for their chemical profile, antioxidant activity, and potential for enzyme inhibition. The total phenolic contents of T. falconeri varied from 40.28 ± 0.47 mg GAE/g to 11.92 ± 0.22 mg GAE/g in various extracts, while flavonoid contents were found highest in TFFM (36.79 ± 0.36 mg QE/g extract) and lowest (11.08 ± 0.22 mg QE/g extract) in TFSC (chloroform extract of stem) in similar pattern as found in total phenolic contents. Highest DPPH inhibition was observed for TFFC (49.58 ± 0.11 mg TE/g extract) and TFSM (46.33 ± 0.10 mg TE/g extract), whereas, TFSM was also potentially active against (98.95 ± 0.57 mg TE/g) ABTS radical. In addition, TFSM was also most active in metal reducing assays: CUPRAC (151.76 ± 1.59 mg TE/g extract) and FRAP (101.30 ± 0.32 mg TE/g extract). In phosphomolybdenum assay, the highest activity was found for TFFE (1.71 ± 0.03 mg TE/g extract), TFSM (1.64 ± 0.035 mg TE/g extract), TFSH (1.60 ± 0.033 mg TE/g extract) and TFFH (1.58 ± 0.08 mg TE/g extract), while highest metal chelating activity was recorded for TFSH (25.93 ± 0.79 mg EDTAE/g extract), TFSE (22.90 ± 1.12 mg EDTAE/g extract) and TFSC (19.31 ± 0.50 mg EDTAE/g extract). In biological screening, all extracts had stronger inhibitory capacity against AChE while in case of BChE the chloroform extract of flower (TFFC) and stem (TFSC) showed the highest activities with inhibitory values of 2.57 ± 0.24 and 2.10 ± 0.18 respectively. Similarly, TFFC and TFSC had stronger inhibitory capacity (1.09 ± 0.015 and 1.08 ± 0.002 mmol ACAE/g extract) against α-Amylase and (0.50 ± 0.02 and 0.55 ± 0.02 mmol ACAE/g extract) α-Glucosidase. UHPLC-MS study of methanolic extract revealed the presence of 133 components including sterols, triterpenes, flavonoids, alkaloids, and coumarins. The total phenolic contents were substantially linked with all antioxidant assays in multivariate analysis. These findings were validated by docking investigations, which revealed that the selected compounds exhibited high binding free energy with the enzymes tested. Finally, it was found that T. falconeri is a viable industrial crop with potential use in the production of functional goods and nutraceuticals.


Assuntos
Antioxidantes , Extratos Vegetais , Tanacetum , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Tanacetum/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Flavonoides/farmacologia , Flavonoides/química , Metabolismo Secundário , Simulação por Computador , Fenóis/farmacologia , Fenóis/química
16.
Sci Total Environ ; 928: 172370, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604367

RESUMO

There is a cross-disciplinary link between air pollution, climate crisis, and sustainable lifestyle as they are the most complex struggles of the present century. This review takes an in-depth look at this relationship, considering carbon dioxide emissions primarily from the burning of fossil fuels as the main contributor to global warming and focusing on primary SLCPs such as methane and ground-level ozone. Such pollutants severely alter the climate through the generation of greenhouse gases. The discussion is extensive and includes best practices from conventional pollution control technologies to hi-tech alternatives, including electric vehicles, the use of renewables, and green decentralized solutions. It also addresses policy matters, such as imposing stricter emissions standards, setting stronger environmental regulations, and rethinking some economic measures. Besides that, new developments such as congestion charges, air ionization, solar-assisted cleaning systems, and photocatalytic materials are among the products discussed. These strategies differ in relation to the local conditions and therefore exhibit a varying effectiveness level, but they remain evident as a tool of pollution deterrence. This stresses the importance of holistic and inclusive approach in terms of engineering, policies, stakeholders, and ecological spheres to tackle.

17.
J Fluoresc ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457078

RESUMO

The design and development of a fluorescence sensor aimed at detecting and quantifying trace amounts of toxic transition metal ions within environmental, biological, and aquatic samples has garnered significant attention from diagnostic and testing laboratories, driven by the imperative to mitigate the health risks associated with these contaminants. In this context, we present the utilization of a heterocyclic symmetrical Schiff Base derivative for the purpose of fluorogenic and chromogenic detection of Co2+, Cu2+ and Hg2+ ions. The characterization of the ligand involved a comprehensive array of techniques, including physical assessments, optical analyses, NMR, FT-IR, and mass spectrometric examinations. The mechanism of ligand-metal complexation was elucidated through the utilization of photophysical parameters and FT-IR spectroscopic analysis, both before and after the interaction between the ligand and the metal salt solution. The pronounced alterations observed in absorption and fluorescence spectra, along with the distinctive chromogenic changes, following treatment with Co2+, Cu2+ and Hg2+, affirm the successful formation of complexes between the ligands and the treated metal ions. Notably, the receptor's complexation response exhibited selectivity towards Co(II), Cu(II), and Hg(II), with no observed chromogenic changes, spectral variations, or band shifts for the various tested metal ions, including Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+ and Al3+. This absence of interaction between these metal ions and the ligand could be attributed to their compact or inadequately conducive conduction bands for complexation with the ligand's structural composition. To quantify the sensor's efficacy, fluorescence titration spectra were employed to determine the detection limits for Co2+, Cu2+ and Hg2+, yielding values of 2.92 × 10-8, 8.91 × 10-8, and 4.39 × 10-3 M, respectively. The Benesi-Hildebrand plots provided association constant values for the ligand-cobalt, ligand-copper, and ligand-mercury complexes as 0.74, 2.52, and 13.89 M-1, respectively.

18.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
19.
Trop Anim Health Prod ; 56(3): 105, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502249

RESUMO

Buffaloes are considered animals of the future with the ability to survive under unfavorable conditions. However, the lack of access to superior germplasm poses a significant challenge to increasing buffalo production. Resveratrol has been shown to improve oocyte quality and developmental competence in various animals during in vitro embryo development. However, limited information is available on the use of resveratrol to improve the in vitro maturation and development competence of Nili Ravi buffalo oocytes. Therefore, the current study aimed to investigate the influence of different concentrations of resveratrol on the maturation, fertilization, and development of buffalo oocytes under in vitro conditions. Oocytes were collected from ovaries and subjected to in vitro maturation (IVM) using varying concentrations of resveratrol (0 µM, 0.5 µM, 1 µM, 1.5 µM, and 2 µM), and the maturation process was assessed using a fluorescent staining technique. Results indicated no significant differences in oocyte maturation, morula rate, and blastocyst rate among the various resveratrol concentrations. However, the cleavage rate notably increased with 1 µM and 1.5 µM concentrations of resveratrol (p < 0.05). In conclusion, the study suggests that adding 1 µM of resveratrol into the maturation media may enhance the cleavage and blastocyst hatching of oocytes of Nili Ravi buffaloes. These findings hold promise for advancing buffalo genetics, reproductive performance, and overall productivity, offering potential benefits to the dairy industry, especially in Asian countries.


Assuntos
Bison , Búfalos , Feminino , Animais , Resveratrol/farmacologia , Fertilização in vitro/veterinária , Oócitos , Ovário
20.
Environ Technol ; : 1-22, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471075

RESUMO

Forward Osmosis (FO), a membrane desalination technology and Capacitive Deionization (CDI), an electrically operated desalination technology, are numerically integrated utilizing four different configurations for the high-water recovery rate and ultrapure water production from brackish water resource. To minimize the wastewater rejection, the CDI desorption stream is continuously fed to the FO unit, efficiently recovering the remaining freshwater. To produce ultrapure water, freshwater stream obtained from FO is provided to the CDI cell, which adsorbs the remaining dissolved solute particles. These two configurations serve the purpose of both industrial as well as domestic water supply requirements. Continuing this concept, the formation of the other two configurations allows us to obtain fresh water and ultrapure water simultaneously and up to a 90% freshwater recovery rate for the areas with inadequate supply. The performance parameters to assess the integration are the Water Recovery Rate (WRR) and Specific Energy Consumption (SEC). The first configuration (CDI-FO), proposed for a high freshwater recovery rate, resulted in 79.33% WRR with an SEC of 0.689kWh/m3. While, for the second configuration (FO-CDI), 34.25% water was recovered as 2.87 ppm ultrapure water along with 34.25% freshwater. The third proposed configuration (CDI-FO-CDI) had a WRR of 79.33%, 14.67% of which was recovered as ultrapure water of concentration 2.86 ppm. The fourth configuration (CDI-FO-FO) developed for high water recovery, removed the maximum of water from the feed stream with a WRR of 91.33% and remained energy-efficient, consuming an SEC of 0.908kWh/m3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA