Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Res Sq ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464070

RESUMO

B lymphocytes may facilitate chronic inflammation through antibody production or secretion of cytokines, including lymphotoxin (LT)-a1b2 associated with development of lymphoid tissue. Tertiary lymphoid structures (TLS) characterize human and murine ileitis by suppressing outflow from the ileum. Here, we show that B cell-derived secretory IgA protected against ileal inflammation, whereas B cell-derived LTa guarded against ileitis-associated loss of body mass. We initially hypothesized this protection resulted from formation of TLS that suppressed lymphatic outflow and thereby restrained systemic spread of inflammatory signals, but B cell-selective deletion of LTb did not exacerbate weight loss, despite eliminating TLS. Instead, weight loss driven by the cachectic cytokine TNF was exacerbated when LTa3, another ligand for TNF receptors, was selectively neutralized. Thus, B cells' multi-faceted impact on ileitis includes generating secretory IgA, expressing LTa1b2 to drive formation of TLS, and producing LTa3 for protecting against weight loss in the presence of TNF.

3.
Gels ; 9(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36826339

RESUMO

Biologic therapies have revolutionized treatment options for rheumatoid arthritis (RA) but their continuous administration at high doses may lead to adverse events. Thus, the development of improved drug delivery systems that can sense and respond commensurately to disease flares represents an unmet medical need. Toward this end, we generated induced pluripotent stem cells (iPSCs) that express interleukin-1 receptor antagonist (IL-1Ra, an inhibitor of IL-1) in a feedback-controlled manner driven by the macrophage chemoattractant protein-1 (Ccl2) promoter. Cells were seeded in agarose hydrogel constructs made from 3D printed molds that can be injected subcutaneously via a blunt needle, thus simplifying implantation of the constructs, and the translational potential. We demonstrated that the subcutaneously injected agarose hydrogels containing genome-edited Ccl2-IL1Ra iPSCs showed significant therapeutic efficacy in the K/BxN model of inflammatory arthritis, with nearly complete abolishment of disease severity in the front paws. These implants also exhibited improved implant longevity as compared to the previous studies using 3D woven scaffolds, which require surgical implantation. This minimally invasive cell-based drug delivery strategy may be adapted for the treatment of other autoimmune or chronic diseases, potentially accelerating translation to the clinic.

4.
Cell Rep ; 42(1): 111977, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640334

RESUMO

During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.


Assuntos
Decídua , Trofoblastos , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez/fisiologia , Decídua/metabolismo , Trofoblastos/metabolismo , Fenótipo , Macrófagos/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(28): e2120667119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867736

RESUMO

Abnormal placentation has been noticed in a variety of pregnancy complications such as miscarriage, early-onset preeclampsia, and fetal growth restriction. Defects in the developmental program of extravillous trophoblasts (EVTs), migrating from placental anchoring villi into the maternal decidua and its vessels, is thought to be an underlying cause. Yet, key regulatory mechanisms controlling commitment and differentiation of the invasive trophoblast lineage remain largely elusive. Herein, comparative gene expression analyses of HLA-G-purified EVTs, isolated from donor-matched placenta, decidua, and trophoblast organoids (TB-ORGs), revealed biological processes and signaling pathways governing EVT development. In particular, bioinformatics analyses and manipulations in different versatile trophoblast cell models unraveled transforming growth factor-ß (TGF-ß) signaling as a crucial pathway driving differentiation of placental EVTs into decidual EVTs, the latter showing enrichment of a secretory gene signature. Removal of Wingless signaling and subsequent activation of the TGF-ß pathway were required for the formation of human leukocyte antigen-G+ (HLA-G+) EVTs in TB-ORGs that resemble in situ EVTs at the level of global gene expression. Accordingly, TGF-ß-treated EVTs secreted enzymes, such as DAO and PAPPA2, which were predominantly expressed by decidual EVTs. Their genes were controlled by EVT-specific induction and genomic binding of the TGF-ß downstream effector SMAD3. In summary, TGF-ß signaling plays a key role in human placental development governing the differentiation program of EVTs.


Assuntos
Placentação , Fator de Crescimento Transformador beta , Trofoblastos , Feminino , Antígenos HLA-G/metabolismo , Humanos , Gravidez , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
6.
Adv Healthc Mater ; 11(9): e2102209, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34967497

RESUMO

Poly(ethylene glycol) (PEG) hydrogels hold promise for in vivo applications but induce a foreign body response (FBR). While macrophages are key in the FBR, many questions remain. This study investigates temporal changes in the transcriptome of implant-associated monocytes and macrophages. Proinflammatory pathways are upregulated in monocytes compared to control monocytes but subside by day 28. Macrophages are initially proinflammatory but shift to a profibrotic state by day 14, coinciding with fibrous capsule emergence. Next, this study assesses the origin of macrophages responsible for fibrous encapsulation using wildtype, C-C Motif Chemokine Receptor 2 (CCR2)-/- mice that lack recruited macrophages, and Macrophage Fas-Induced Apoptosis (MaFIA) mice that enable macrophage ablation. Subpopulations of recruited and tissue-resident macrophages are identified. Fibrous encapsulation proceeds in CCR2-/- mice similar to wildtype mice. However, studies in MaFIA mice indicate that macrophages are necessary for fibrous capsule formation. These findings suggest that macrophage origin impacts the FBR progression and provides evidence that tissue-resident macrophages and not the recruited macrophages may drive fibrosis in the FBR to PEG hydrogels. This study demonstrates that implant-associated monocytes and macrophages have temporally distinct transcriptomes in the FBR and that profibrotic pathways associated with macrophages may be enriched in tissue-resident macrophages.


Assuntos
Corpos Estranhos , Ativação de Macrófagos , Animais , Materiais Biocompatíveis/metabolismo , Fibrose , Corpos Estranhos/metabolismo , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia
7.
Rev Environ Health ; 36(2): 223-234, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32894727

RESUMO

OBJECTIVES: This study was performed to determine the knowledge, attitude, and practice (KAP) of health care workers (HCWs) towards radiation protection. METHODS: In this systematic review study, three international databases (Web of Science, PubMed, Scopus) were searched for related published articles in the English language from 1 January 2000 to 1 February 2020. The quality of the included studies was evaluated using the Hoy et al. tool. RESULTS: Out of the 1,848 studies examined, 41 studies that were performed on 11,050 HCWs were included in the final stage. The results indicated that in most studies, more than half (50%) of the participants had average knowledge. Furthermore, 60% of the participants had a positive attitude, but in most studies, they had average practice regarding radiation protection. The most important recommendation for improving KAP among the participants was incorporating radiation protection standards in the student curriculum. CONCLUSION: Considering the results of the study, further attention should be paid to proper education regarding radiation protection standards and improvement of HCW performance.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Proteção Radiológica , Pessoal de Saúde , Humanos
8.
Hum Reprod ; 35(11): 2467-2477, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940686

RESUMO

STUDY QUESTION: Do high endothelial venules (HEVs) appear in the uterus of healthy and pathological pregnancies? SUMMARY ANSWER: Our study reveals that HEVs are present in the non-pregnant endometrium and decidua parietalis (decP) but decline upon placentation in decidua basalis (decB) and are less abundant in decidual tissues from idiopathic, recurrent pregnancy losses (RPLs). WHAT IS KNOWN ALREADY: RPL is associated with a compromised decidual vascular phenotype. STUDY DESIGN, SIZE, DURATION: Endometrial (n = 29) and first trimester decidual (n = 86, 6-12th week of gestation) tissue samples obtained from endometrial biopsies or elective pregnancy terminations were used to determine the number of HEVs and T cells. In addition, quantification of HEVs and immune cells was performed in a cohort of decidual tissues from RPL (n = 25). PARTICIPANTS/MATERIALS, SETTING, METHODS: Position and frequency of HEVs were determined in non-pregnant endometrial as well as decidual tissue sections using immunofluorescence (IF) staining with antibodies against E-selectin, intercellular adhesion molecule, von Willebrand factor, ephrin receptor B4, CD34 and a carbohydrate epitope specific to HEVs (MECA-79). Immune cell distribution and characterization was determined by antibodies recognizing CD45 and CD3 by IF staining- and flow cytometry-based analyses. Antibodies against c-c motif chemokine ligand 21 (CCL21) and lymphotoxin-beta were used in IF staining and Western blot analyses of decidual tissues. MAIN RESULTS AND THE ROLE OF CHANCE: Functional HEVs are found in high numbers in the secretory endometrium and decP but decline in numbers upon placentation in decB (P ≤ 0.001). Decidua parietalis tissues contain higher levels of the HEV-maintaining factor lymphotoxin beta and decP-associated HEVs also express CCL21 (P ≤ 0.05), a potent T-cell chemoattractant. Moreover, there is a positive correlation between the numbers of decidual HEVs and the abundance of CD3+ cells in decidual tissue sections (P ≤ 0.001). In-depth analysis of a RPL tissue collection revealed a decreased decB (P ≤ 0.01) and decP (P ≤ 0.01) HEV density as well as reduced numbers of T cells in decB (P ≤ 0.05) and decP (P ≤ .001) sections when compared with age-matched healthy control samples. Using receiver-operating characteristics analyses, we found significant predictive values for the ratios of CD3/CD45 (P < 0.001) and HEVs/total vessels (P < 0.001) for the occurrence of RPL. LIMITATIONS, REASONS FOR CAUTION: Analyses were performed in first trimester decidual tissues from elective terminations of pregnancy or non-pregnant endometrium samples from patients diagnosed with non-endometrial pathologies including cervical polyps, ovarian cysts and myomas. First trimester decidual tissues may include pregnancies which potentially would have developed placental disorders later in gestation. In addition, our cohort of non-pregnant endometrium may not reflect the endometrial vascular phenotype of healthy women. Finally, determination of immune cell distributions in the patient cohorts studied may be influenced by the different modes of tissue derivation. Pregnancy terminations were performed by surgical aspiration, endometrial tissues were obtained by biopsies and RPL tissues were collected after spontaneous loss of pregnancy. WIDER IMPLICATIONS OF THE FINDINGS: In this study, we propose an inherent mechanism by which the endometrium and in particular the decidua control T-cell recruitment. By demonstrating reduced HEV densities and numbers of T cells in decB and decP tissues of RPL samples we further support previous findings reporting an altered vascular phenotype in early pregnancy loss. Altogether, the findings provide important information to further decipher the etiologies of unexplained RPL. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Austrian Science Fund (P31470 B30 to M.K.) and by the Austrian National Bank (17613ONB to J.P.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Decídua , Trofoblastos , Áustria , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Linfócitos T , Vênulas
9.
Proc Natl Acad Sci U S A ; 117(24): 13562-13570, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482863

RESUMO

Various pregnancy complications, such as severe forms of preeclampsia or intrauterine growth restriction, are thought to arise from failures in the differentiation of human placental trophoblasts. Progenitors of the latter either develop into invasive extravillous trophoblasts, remodeling the uterine vasculature, or fuse into multinuclear syncytiotrophoblasts transporting oxygen and nutrients to the growing fetus. However, key regulatory factors controlling trophoblast self-renewal and differentiation have been poorly elucidated. Using primary cells, three-dimensional organoids, and CRISPR-Cas9 genome-edited JEG-3 clones, we herein show that YAP, the transcriptional coactivator of the Hippo signaling pathway, promotes maintenance of cytotrophoblast progenitors by different genomic mechanisms. Genetic or chemical manipulation of YAP in these cellular models revealed that it stimulates proliferation and expression of cell cycle regulators and stemness-associated genes, but inhibits cell fusion and production of syncytiotrophoblast (STB)-specific proteins, such as hCG and GDF15. Genome-wide comparisons of primary villous cytotrophoblasts overexpressing constitutively active YAP-5SA with YAP KO cells and syncytializing trophoblasts revealed common target genes involved in trophoblast stemness and differentiation. ChIP-qPCR unraveled that YAP-5SA overexpression increased binding of YAP-TEAD4 complexes to promoters of proliferation-associated genes such as CCNA and CDK6 Moreover, repressive YAP-TEAD4 complexes containing the histone methyltransferase EZH2 were detected in the genomic regions of the STB-specific CGB5 and CGB7 genes. In summary, YAP plays a pivotal role in the maintenance of the human placental trophoblast epithelium. Besides activating stemness factors, it also directly represses genes promoting trophoblast cell fusion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Placentação , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Proliferação de Células , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Placenta/metabolismo , Gravidez , Ligação Proteica , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
10.
Biol Reprod ; 103(1): 135-143, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32307542

RESUMO

The use of drugs in pregnancy always raises concerns regarding potential fetal exposure and possible adverse effects through their accumulation in fetal tissues and organs. Barusiban is an oxytocin antagonist under development for potential use as tocolytic in preterm-labor patients. It displays greater affinity for the oxytocin receptor compared to vasopressin V1A receptor and would thus not interfere with vasopressin-induced effects of the V1A receptor. Barusiban placental transfer was determined in the rabbit and cynomolgus monkey and in an ex vivo human cotyledon model. In the rabbit, there was an approximately 5% transfer of barusiban from the maternal to the fetal blood, without significant accumulation in any of the investigated fetal tissues. In the cynomolgus monkeys, the mean fetal plasma barusiban concentration was 9.1% of the maternal level. This was similar to the percentage of barusiban transfer in the human placental single cotyledon, which once equilibrated ranged between 9.3 and 11.0% over the observation period. The transfer of the small-molecule antipyrine as a comparator in this human model was approximately three times greater. The similarity in the degree of transfer in the cynomolgus monkey and human cotyledon, while being less in the rabbit, may reflect the species-specific placental barrier structure between the maternal and fetal compartments. In conclusion, limited placental transfer of barusiban occurred in all three models. The similarity of barusiban transfer in the cynomolgus and the human placental single cotyledon suggests the latter ex vivo model to be useful in assessing future drug candidates to be used in pregnant women.


Assuntos
Troca Materno-Fetal , Oligopeptídeos/farmacocinética , Receptores de Ocitocina/antagonistas & inibidores , Animais , Feminino , Sangue Fetal/química , Feto/química , Humanos , Macaca fascicularis , Masculino , Oligopeptídeos/análise , Oligopeptídeos/metabolismo , Ocitocina/antagonistas & inibidores , Placenta/metabolismo , Gravidez , Coelhos , Especificidade da Espécie , Tocolíticos
11.
ACS Biomater Sci Eng ; 6(5): 2668-2681, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463295

RESUMO

The foreign body response (FBR) has impaired progress of new implantable medical devices through its hallmark of chronic inflammation and foreign body giant cell (FBGC) formation leading to fibrous encapsulation. Macrophages are known to drive the FBR, but efforts to control macrophage polarization remain challenging. The goal for this study was to investigate whether prostaglandin E2 (PGE2), and specifically its receptors EP2 and/or EP4, attenuate classically activated (i.e., inflammatory) macrophages and macrophage fusion into FBGCs in vitro. Lipopolysaccharide (LPS)-stimulated macrophages exhibited a dose-dependent decrease in gene expression and protein production of tumor necrosis factor alpha (TNF-α) when treated with PGE2. This attenuation was primarily by the EP4 receptor, as the addition of the EP2 antagonist PF 04418948 to PGE2-treated LPS-stimulated cells did not recover TNF-α production while the EP4 antagonist ONO AE3 208 did. However, direct stimulation of EP2 with the agonist butaprost to LPS-stimulated macrophages resulted in a ∼60% decrease in TNF-α secretion after 4 h and corresponded with an increase in gene expression for Cebpb and Il10, suggesting a polarization shift toward alternative activation through EP2 alone. Further, fusion of macrophages into FBGCs induced by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was inhibited by PGE2 via EP2 signaling and by an EP2 agonist, but not an EP4 agonist. The attenuation by PGE2 was confirmed to be primarily by the EP2 receptor. Mrc1, Dcstamp, and Retlna expressions increased upon IL-4/GM-CSF stimulation, but only Retnla expression with the EP2 agonist returned to levels that were not different from controls. This study identified that PGE2 attenuates classically activated macrophages and macrophage fusion through distinct EP receptors, while targeting EP2 is able to attenuate both. In summary, this study identified EP2 as a potential therapeutic target for reducing the FBR to biomaterials.


Assuntos
Dinoprostona , Receptores de Prostaglandina E Subtipo EP2 , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Receptores de Prostaglandina E Subtipo EP4
12.
Anesth Analg ; 130(2): 321-331, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31498191

RESUMO

BACKGROUND: Epidural-related maternal fever (ERMF) is an adverse effect of epidural analgesia during labor and is associated with perinatal and neonatal morbidity. Local anesthetics have been proposed to trigger ERMF via sterile inflammation. Ropivacaine is currently the most frequently used epidural anesthetic and considered least toxic. This study investigates molecular effects of ropivacaine on human umbilical vein endothelial cells (HUVECs) as model system for endothelial cells and human placental trophoblasts (TBs), compares the effects to the putative anti-inflammatory lidocaine and investigates the partially alleviating impact of the anti-inflammatory corticosteroid dexamethasone. METHODS: HUVECs and TBs were exposed to ropivacaine (35 µM-7 mM) or lidocaine (21 mM) with or without dexamethasone (1 µM). AnnexinV/propidium iodide staining and lactate dehydrogenase release were used to analyze apoptosis and cytotoxicity. Proinflammatory interleukins-6 (IL-6) and IL-8 as well as prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay (ELISA), while activation of signaling pathways was detected by Western blotting. Oxidative stress was visualized by live cell imaging and quantification of antioxidant proteins, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, platelet endothelial cell adhesion molecule 1, cyclooxygenase 2, and mitochondrial deoxyribonucleic acid by real-time polymerase chain reaction. Dissipation of the mitochondrial membrane potential was assessed with cytofluorimetric analysis using the J-Aggregate (JC-1 staining [cytofluorimetric analysis using the J-Aggregate]). RESULTS: Ropivacaine exposure dose-dependently induced apoptosis and an increased release of IL-6, IL-8, and PGE2 from HUVECs and TBs. Furthermore, caspase-3, nuclear factor-κB, and p38 mitogen-activated protein kinase pathways were activated, while extracellular signal-regulated kinase 1/2 and protein kinase B (Akt) were dephosphorylated. Downregulation of antioxidative proteins induced oxidative stress and upregulation of ICAM1, VCAM1, and PECAM1 possibly facilitate leukocyte transmigration. Mitochondrial effects included increased release of the proinflammatory mitochondrial DNA damage-associated molecular patterns, but no significant dissipation of the mitochondrial membrane potential. Conversely, lidocaine exhibited repression of IL-6 and IL-8 release over all time points, and early downregulation of COX2 and cell adhesion molecules, which was followed by a late overshooting reaction. Dexamethasone reduced especially inflammatory effects, but as an inducer of mitophagy, had negative long-term effects on mitochondrial function. CONCLUSIONS: This study suggests that ropivacaine causes cellular injury and death in HUVECs and TBs via different signaling pathways. The detrimental effects induced by ropivacaine are only partially blunted by dexamethasone. This observation strengthens the importance of inflammation in ERMF.


Assuntos
Anestesia Epidural/efeitos adversos , Anestésicos Locais/efeitos adversos , Apoptose/efeitos dos fármacos , Febre/metabolismo , Mediadores da Inflamação/metabolismo , Ropivacaina/efeitos adversos , Anestésicos Locais/administração & dosagem , Apoptose/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Febre/induzido quimicamente , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Gravidez , Ropivacaina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
Acta Biomater ; 100: 105-117, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568879

RESUMO

Synthetic hydrogels, such as poly(ethylene glycol) (PEG), are promising for a range of in vivo applications. However, like all non-biological biomaterials, synthetic hydrogels including PEG elicit a foreign body response (FBR). The FBR is thought to be initiated by adsorbed protein that is recognized by and subsequently activates inflammatory cells, notably macrophages, and culminates with fibrotic encapsulation. However, the molecular mechanisms that drive the FBR are not well understood. Toll-like receptors (TLRs) are key receptors that recognize pathogens, but also recognize altered host proteins that display damage-associated molecular patterns (DAMPs). Thus TLRs may play a role in the FBR. Here, we investigated myeloid differentiation primary response gene 88 (MyD88), a signaling adaptor protein that mediates inflammatory cytokine production induced by most TLRs. An in vitro model was used consisting of macrophages cultured on the surface of synthetic hydrogels, specifically PEG, with pre-adsorbed serum proteins. Our in vitro findings demonstrate that MyD88-dependent signaling is the predominant inflammatory pathway in macrophage activation to synthetic hydrogels. When stimulated with TLR agonists to mimic additional DAMPs present in vivo, MyD88-dependent signaling was also the predominant pathway in macrophage activation. An in vivo model of PEG hydrogels implanted subcutaneously in wild-type and MyD88-/- mice also demonstrated that MyD88 is the key contributor to the recruitment of inflammatory cells and formation of the fibrous capsule surrounding the implanted hydrogel. Taken together, findings from this study identify MyD88-mediated inflammation as being a critical pathway involved not only in the inflammatory response, but in formation of the fibrous capsule to PEG hydrogels. STATEMENT OF SIGNIFICANCE: Synthetic hydrogels are promising for in vivo applications but, like all non-biological biomaterials, synthetic hydrogels elicit a foreign body response (FBR). The molecular mechanisms that drive the FBR are not well understood. This work identifies the myeloid differentiation primary response gene 88 (MyD88) as a central mediator to macrophage activation in response to a poly(ethylene glycol) hydrogel with pre-adsorbed proteins in vitro. Moreover, MyD88 was also central to the recruitment of inflammatory cells, which included neutrophils, monocytes, and macrophages, to implanted PEG hydrogels and to fibrous encapsulation. These findings demonstrate that MyD88-mediated inflammation is responsible in part for the formation of the fibrous capsule of the FBR.


Assuntos
Hidrogéis/efeitos adversos , Implantes Experimentais/efeitos adversos , Inflamação/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Polietilenoglicóis/efeitos adversos , Transdução de Sinais , Alarminas/metabolismo , Animais , Fibrose , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/patologia , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos C57BL
14.
Cell Mol Life Sci ; 76(18): 3479-3496, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31049600

RESUMO

Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.


Assuntos
Placenta/metabolismo , Trofoblastos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Diferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Modelos Biológicos , Placenta/anatomia & histologia , Placentação , Gravidez , Transdução de Sinais , Trofoblastos/citologia
15.
ACS Appl Bio Mater ; 2(11): 4698-4702, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021468

RESUMO

We show that protein unfolding on biomaterials may be dramatically reduced via tuning the chemical heterogeneity of the protein-material interface. Specifically, using dynamic single-molecule methods, we confirmed that the transient structure and dynamics of fibronectin (FN) may be mediated through varying the composition of random copolymer brushes. The brushes, which themselves represent an intriguing biomaterial, were composed of oligoethylene glycol and sulfobetaine methacrylate and presumably stabilized FN through partitioning and/or segregation of the copolymers. We further showed that, by controlling the transient structure and dynamics of FN, the secretion of TNF-α and IL-6 by RAW 264.7 was markedly diminished.

16.
Curr Opin Biomed Eng ; 6: 58-65, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30374467

RESUMO

Implantation of cell-laden scaffolds is a promising strategy for regenerating tissue that has been damaged due to injury or disease. However, the act of implantation initiates an acute inflammatory response. If the scaffold is non-biologic (i.e., a modified biologic scaffold or synthetic-based scaffold), inflammation will be prolonged through the foreign body response (FBR), which eventually forms a fibrous capsule and walls off the implant from the surrounding host tissue. This host response, from a cellular perspective, can create a harsh environment leading to long-lasting effects on the tissue engineering outcome. At the same time, cells embedded within the scaffold can respond to this environment and influence the interrogating immune cells (e.g., macrophages). This crosstalk, depending on the type of cell, can dramatically influence the host response. This review provides an overview of the FBR and highlights important and recent advancements in the host response to cell-laden scaffolds with a focus on the impact of the communication between immune cells and cells embedded within a scaffold. Understanding this complex interplay between the immune cells, notably macrophages, and the tissue engineering cells is a critically important component to a successful in vivo tissue engineering therapy.

17.
Stem Cell Reports ; 11(2): 537-551, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30078556

RESUMO

Defective placentation is the underlying cause of various pregnancy complications, such as severe intrauterine growth restriction and preeclampsia. However, studies on human placental development are hampered by the lack of a self-renewing in vitro model that would recapitulate formation of trophoblast progenitors and differentiated subtypes, syncytiotrophoblast (STB) and invasive extravillous trophoblast (EVT), in a 3D orientation. Hence, we established long-term expanding organoid cultures from purified first-trimester cytotrophoblasts (CTBs). Molecular analyses revealed that the CTB organoid cultures (CTB-ORGs) express markers of trophoblast stemness and proliferation and are highly similar to primary CTBs at the level of global gene expression. Whereas CTB-ORGs spontaneously generated STBs, withdrawal of factors for self-renewal induced trophoblast outgrowth, expressing the EVT progenitor marker NOTCH1, and provoked formation of adjacent, distally located HLA-G+ EVTs. In summary, we established human CTB-ORGs that grow and differentiate under defined culture conditions, allowing future human placental disease modeling.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Organoides/citologia , Placenta/citologia , Trofoblastos/citologia , Biomarcadores , Proliferação de Células , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Gravidez , Trofoblastos/metabolismo , Via de Sinalização Wnt
18.
Biomacromolecules ; 19(7): 2880-2888, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29698603

RESUMO

Reducing the foreign body response (FBR) to implanted biomaterials will enhance their performance in tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are increasingly popular for this application due to their low cost, ease of use, and the ability to tune their compliance via molecular weight and cross-linking densities. PEG hydrogels can elicit chronic inflammation in vivo, but recent evidence has suggested that extremely hydrophilic, zwitterionic materials and particles can evade the immune system. To combine the advantages of PEG-based hydrogels with the hydrophilicity of zwitterions, we synthesized hydrogels with comonomers PEG and the zwitterion phosphorylcholine (PC). Recent evidence suggests that stiff hydrogels elicit increased immune cell adhesion to hydrogels, which we attempted to reduce by increasing hydrogel hydrophilicity. Surprisingly, hydrogels with the highest amount of zwitterionic comonomer elicited the highest FBR. Lowering the hydrogel modulus (165 to 3 kPa), or PC content (20 to 0 wt %), mitigated this effect. A high density of macrophages was found at the surface of implants associated with a high FBR, and mass spectrometry analysis of the proteins adsorbed to these gels implicated extracellular matrix, immune response, and cell adhesion protein categories as drivers of macrophage recruitment. Overall, we show that modulus regulates macrophage adhesion to zwitterionic-PEG hydrogels, and demonstrate that chemical modifications to hydrogels should be studied in parallel with their physical properties to optimize implant design.


Assuntos
Reação a Corpo Estranho/prevenção & controle , Hidrogéis/química , Fosforilcolina/análogos & derivados , Polietilenoglicóis/química , Animais , Adesão Celular , Células Cultivadas , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Biomed Mater ; 13(4): 045009, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29611815

RESUMO

This study investigated the effects of introducing hydroxyapatite nanoparticles into a matrix metalloproteinase (MMP) sensitive poly(ethylene glycol) (PEG) hydrogel containing cell adhesion peptides of RGD for bone tissue engineering. MC3T3-E1 pre-osteoblasts were encapsulated in the biomimetic PEG hydrogel, which was formed from the photoclick thiol-norbornene reaction system, cultured for up to 28 d in growth medium or osteogenic differentiation medium, and evaluated by cellular morphology and differentiation by alkaline phosphatase (ALP) activity and bone-like extracellular matrix deposition for mineral and collagen. Hydroxyapatite nanoparticles were incorporated during hydrogel formation and cell encapsulation at 0%, 0.1% or 1% (w/w). Incorporation of hydroxyapatite nanoparticles did not affect the hydrogel properties as measured by compressive modulus and equilibrium swelling. In growth medium, encapsulated MC3T3-E1 cells remained largely round regardless of hydroxyapatite concentration. ALP activity increased by 25% at day 14 and total collagen content increased by 55% at day 28 with increasing hydroxyapatite concentration from 0% to 1%. In differentiation medium, cell spreading was evident regardless of hydroxyapatite indicating that the MC3T3-E1 cells were able to degrade the hydrogel. For the 1% hydroxyapatite condition, ALP activity was 27% higher at day 14 and total collagen content was 22% higher at day 28 in differentiation medium when compared to growth medium. Mineral deposits were more abundant and spatial elaboration of collagen type I was more evident in the 1% (w/w) hydroxyapatite condition with differentiation medium when compared to all other conditions. Overall, osteogenesis was observed in the hydrogels with hydroxyapatite nanoparticles in growth medium but was enhanced in differentiation medium. In summary, a biomimetic hydrogel comprised of MMP-sensitive crosslinks, RGD cell adhesion peptides, and 1% (w/w) hydroxyapatite nanoparticles is promising for bone tissue engineering.


Assuntos
Durapatita/química , Metaloproteinases da Matriz/química , Nanopartículas Metálicas/química , Osteoblastos/citologia , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis , Substitutos Ósseos/química , Adesão Celular , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Colágeno/química , Meios de Cultura , Matriz Extracelular/metabolismo , Hidrogéis/química , Ligantes , Camundongos , Norbornanos/química , Oligopeptídeos/química , Osteoblastos/metabolismo , Osteogênese , Estresse Mecânico , Compostos de Sulfidrila , Alicerces Teciduais/química
20.
Acta Biomater ; 71: 37-48, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29505890

RESUMO

Poly(ethylene glycol) PEG-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The goal of this study was to investigate the impact of the FBR, and specifically the presence of inflammatory macrophages, on encapsulated cells and their ability to synthesize new extracellular matrix. This study employed an in vitro co-culture system with murine macrophages and MC3T3-E1 pre-osteoblasts encapsulated in a bone-mimetic hydrogel, which were cultured in transwell inserts, and exposed to an inflammatory stimulant, lipopolysaccharide (LPS). The co-culture was compared to mono-cultures of the cell-laden hydrogels alone and with LPS over 28 days. Two macrophage cell sources, RAW 264.7 and primary derived, were investigated. The presence of LPS-stimulated primary macrophages led to significant changes in the cell-laden hydrogel by a 5.3-fold increase in percent apoptotic osteoblasts at day 28, 4.2-fold decrease in alkaline phosphatase activity at day 10, and 7-fold decrease in collagen deposition. The presence of LPS-stimulated RAW macrophages led to significant changes in the cell-laden hydrogel by 5-fold decrease in alkaline phosphatase activity at day 10 and 4-fold decrease in collagen deposition. Mineralization, as measured by von Kossa stain or quantified by calcium content, was not sensitive to macrophages or LPS. Elevated interleukin-6 and tumor necrosis factor-α secretion were detected in mono-cultures with LPS and co-cultures. Overall, primary macrophages had a more severe inhibitory effect on osteoblast differentiation than the macrophage cell line, with greater apoptosis and collagen I reduction. In summary, this study highlights the detrimental effects of macrophages on encapsulated cells for bone tissue engineering. STATEMENT OF SIGNIFICANCE: Poly(ethylene glycol) (PEG)-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The impact of the FBR on encapsulated cells and their ability to synthesize tissue has not been well studied. This study utilizes thiol-ene click chemistry to create a biomimetic, enzymatically degradable hydrogel system with which to encapsulate MC3T3-E1 pre-osteoblasts. The osteogenic capabilities and differentiation of these cellswerestudied in co-culture with macrophages, known drivers of the FBR.This study demonstrates that macrophages reduce osteogenic capabilities of encapsulated cellsin vitroand suggestthat the FBR should be considered for in vivo tissue engineering.


Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Polietilenoglicóis/química , Animais , Técnicas de Cocultura , Macrófagos/citologia , Camundongos , Osteoblastos/citologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA