Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int Immunopharmacol ; 124(Pt A): 110792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633239

RESUMO

INTRODUCTION: One of the most pressing concerns associated with breast cancer-targeted therapies is resistance to Tamoxifen and Herceptin. Such drug resistance is usually characterized by reduced expression of certain cell surface receptors. Some biological regimens can induce perceptible overexpression of these receptors in favor of drug responsiveness. MATERIAL AND METHODS: In this research, drug-responsive MCF-7 and SKBR-3, along with drug-resistant MCF-7R (Tamoxifen resistant) and JIMT-1 (Herceptin resistant) breast cancer cell lines in 2D and 3D cultures were exposed to anti-MUC1 nanobody and then assessed for their ER, PR, and HER2 gene and protein expression using qRT-PCR and immunofluorescent staining analyses. Cell viability and the synergistic relationships of combination treatments were determined with MTT assay followed by CompuSyn software. Apoptotic cells were evaluated with Annexin V/propidium Iodide (PI) and acridine orange/ethidium bromide (AO/EB) staining. RESULTS: Anti-MUC1 exposure elevated the expression levels of ER (42 folds), PR (18.5 folds), and HER2 (4.7 folds). As a result of co-treatment, the IC50 levels for Tamoxifen and Herceptin were reduced by up to 10 and 3 folds, respectively. MCF-7R cells responded positively to Tamoxifen, as evidenced by a 5-fold reduction in the IC50 and enhanced apoptosis. CONCLUSION: The ER, PR, and HER2 overexpression after MUC1 blocking could signal drug hypersensitization and facilitate drug resistance management.

2.
Iran J Immunol ; 20(3): 303-315, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37434357

RESUMO

Background: Trastuzumab is a humanized monoclonal antibody that targets site-specifically human epidermal growth factor-2 receptor (HER2) cell surface antigen overexpressed in approximately 20% of human breast carcinomas. Despite its positive therapeutic outcomes, a large proportion of individuals are unresponsive to the treatment with the trastuzumab or develop resistance to it. Objective: To evaluate a chemically synthesized trastuzumab-based antibody-drug conjugate (ADC) to improve the trastuzumab therapeutic index. Methods: The current study explored the physiochemical characteristics of the trastuzumab conjugated to a cytotoxic chemotherapy agent DM1 via Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) linker, created in our earlier study, using SDS-PAGE, UV/VIS, and RP-HPLC analyses. The antitumor effects of the ADCs were analyzed using MDA-MB-231 (HER2-negative) and SK-BR-3 (HER2-positive) cell lines utilizing in vitro cytotoxicity, viability, and binding assays. Three different formats of a HER2-targeting agent: trastuzumab, synthesized trastuzumab-MCC-DM1, and commercially available drug T-DM1 (Kadcyla®) were compared. Results: UV-VIS spectroscopic analysis showed that the trastuzumab-MCC-DM1 conjugates, on average, entailed 2.9 DM1 payloads per trastuzumab. A free drug level of 2.5% was determined by RP-HPLC. The conjugate appeared as two bands on a reducing SDS-PAGE gel. MTT viability assay showed that conjugating trastuzumab with DM1 significantly improved the antiproliferative effects of this antibody in vitro. Importantly, the evaluations using LDH release and cell apoptosis assays confirmed that trastuzumab maintains its ability to induce cell death response while conjugating with the DM1. The binding efficiency of trastuzumab-MCC-DM1 was comparable to that of the naked trastuzumab. Conclusion: Trastuzumab-MCC-DM1 was found effective against HER2+ tumors. The potency of this synthesized conjugate brings it closer to the commercially available T-DM1.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Ado-Trastuzumab Emtansina/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Imunoconjugados/uso terapêutico
3.
Int Immunopharmacol ; 122: 110656, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473710

RESUMO

BACKGROUND: The utilization of monoclonal antibodies (moAbs), an issue correlated with the biopharmaceutical professions, is developing and maturing. Coordinated with this conception, we produced the appealingly modeled anti-EpCAM scFv for breast cancer tumors. METHODS: Afterward cloning and expression of recombinant antibody in Escherichia coli bacteria, the correctness of the desired antibody was checked by western blotting. Flow cytometry was utilized to determine the capacity of the recombinant antibody to append to the desired receptors in the malignant breast cancer (BC)cell line. The recombinant antibody (anti-EpCAM scFv) was examined for preclinical efficacy in reducing tumor growth, angiogenesis, and invasiveness (in vitro- in vivo). FINDINGS: A target antibody-mediated attenuation of migration and invasion in the examined cancer cell lines was substantiated (P-value < 0.05). Grafted tumors from breast cancer in mice indicated significant and compelling suppression of tumor growth and decrement in blood supply in reaction to the recombinant anti-EpCAM intervention. Evaluations of immunohistochemical and histopathological findings revealed an enhanced response rate to the treatment. CONCLUSION: The desired anti-EpCAM scFv can be a therapeutic tool to reduce invasion and proliferation in malignant breast cancer.


Assuntos
Neoplasias da Mama , Moléculas de Adesão Celular , Humanos , Animais , Camundongos , Feminino , Moléculas de Adesão Celular/metabolismo , Antígenos de Neoplasias , Linhagem Celular Tumoral , Anticorpos Monoclonais/uso terapêutico , Células MCF-7 , Proteínas Recombinantes/uso terapêutico
4.
Invest New Drugs ; 41(2): 226-239, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37004643

RESUMO

The usage of monoclonal antibodies (mAbs) and antibody fragments, as a matter associated with the biopharmaceutical industry, is increasingly growing. Harmonious with this concept, we designed an exclusive modeled single-chain variable fragment (scFv) against mesenchymal-epithelial transition (MET) oncoprotein. This scFv was newly developed from Onartuzumab sequence by gene cloning, and expression using bacterial host. Herein, we examined its preclinical efficacy for the reduction of tumor growth, invasiveness and angiogenesis in vitro and in vivo. Expressed anti-MET scFv demonstrated high binding capacity (48.8%) toward MET-overexpressing cancer cells. The IC50 value of anti-MET scFv against MET-positive human breast cancer cell line (MDA-MB-435) was 8.4 µg/ml whereas this value was measured as 47.8 µg/ml in MET-negative cell line BT-483. Similar concentrations could also effectively induce apoptosis in MDA-MB-435 cancer cells. Moreover, this antibody fragment could reduce migration and invasion in MDA-MB-435 cells. Grafted breast tumors in Balb/c mice showed significant tumor growth suppression as well as reduction of blood-supply in response to recombinant anti-MET treatment. Histopathology and immunohistochemical assessments revealed higher rate of response to therapy. In our study, we designed and synthetized a novel anti-MET scFv which could effectively suppress MET-overexpressing breast cancer tumors.


Assuntos
Neoplasias da Mama , Anticorpos de Cadeia Única , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/genética , Genes Supressores de Tumor
6.
Mol Oncol ; 16(2): 485-507, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694686

RESUMO

Alteration in glycosylation pattern of MUC1 mucin tandem repeats during carcinomas has been shown to negatively affect adhesive properties of malignant cells and enhance tumor invasiveness and metastasis. In addition, MUC1 overexpression is closely interrelated with angiogenesis, making it a great target for immunotherapy. Alongside, easier interaction of nanobodies (single-domain antibodies) with their antigens, compared to conventional antibodies, is usually associated with superior desirable results. Herein, we evaluated the preclinical efficacy of a recombinant nanobody against MUC1 tandem repeats in suppressing tumor growth, angiogenesis, invasion, and metastasis. Expressed nanobody demonstrated specificity only toward MUC1-overexpressing cancer cells and could internalize in cancer cell lines. The IC50 values (the concentration at which the nanobody exerted half of its maximal inhibitory effect) of the anti-MUC1 nanobody against MUC1-positive human cancer cell lines ranged from 1.2 to 14.3 nm. Similar concentrations could also effectively induce apoptosis in MUC1-positive cancer cells but not in normal cells or MUC1-negative human cancer cells. Immunohistochemical staining of spontaneously developed mouse breast tumors prior to in vivo studies confirmed cross-reactivity of nanobody with mouse MUC1 despite large structural dissimilarities between mouse and human MUC1 tandem repeats. In vivo, a dose of 3 µg nanobody per gram of body weight in tumor-bearing mice could attenuate tumor progression and suppress excessive circulating levels of IL-1a, IL-2, IL-10, IL-12, and IL-17A pro-inflammatory cytokines. Also, a significant decline in expression of Ki-67, MMP9, and VEGFR2 biomarkers, as well as vasculogenesis, was evident in immunohistochemically stained tumor sections of anti-MUC1 nanobody-treated mice. In conclusion, the anti-MUC1 tandem repeat nanobody of the present study could effectively overcome tumor growth, invasion, and metastasis.


Assuntos
Proliferação de Células/genética , Neoplasias Mamárias Animais/patologia , Mucina-1/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neovascularização Patológica/genética , Anticorpos de Domínio Único/genética , Sequências de Repetição em Tandem , Animais , Apoptose/genética , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Reações Cruzadas , Citocinas/metabolismo , Feminino , Humanos , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucina-1/imunologia , Ligação Proteica , Anticorpos de Domínio Único/imunologia
7.
J Biol Eng ; 15(1): 20, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344421

RESUMO

Development of engineered non-pathogenic bacteria, capable of expressing anti-cancer proteins under tumor-specific conditions, is an ideal approach for selectively eradicating proliferating cancer cells. Herein, using an engineered hypoxia responding nirB promoter, we developed an engineered Escherichia coli BW25133 strain capable of expressing cardiac peptides and GFP signaling protein under hypoxic condition for spatiotemporal targeting of mice mammary tumors. Following determination of the in vitro cytotoxicity profile of the engineered bacteria, selective accumulation of bacteria in tumor microenvironment was studied 48 h after tail vein injection of 108 cfu bacteria in animals. For in vivo evaluation of antitumoral activities, mice with establishment mammary tumors received 3 consecutive intravenous injections of transformed bacteria with 4-day intervals and alterations in expression of tumor growth, invasion and angiogenesis specific biomarkers (Ki-67, VEGFR, CD31and MMP9 respectively), as well as fold changes in concentration of proinflammatory cytokines were examined at the end of the 24-day study period. Intravenously injected bacteria could selectively accumulate in tumor site and temporally express GFP and cardiac peptides in response to hypoxia, enhancing survival rate of tumor bearing mice, suppressing tumor growth rate and expression of MMP-9, VEGFR2, CD31 and Ki67 biomarkers. Applied engineered bacteria could also significantly reduce concentrations of IL-1ß, IL-6, GC-SF, IL-12 and TNF-α proinflammatory cytokines while increasing those of IL-10, IL-17A and INF-γ. Overall, administration of hypoxia-responding E. coli bacteria, carrying cardiac peptide expression construct could effectively suppress tumor growth, angiogenesis, invasion and metastasis and enhance overall survival of mice bearing mammary tumors.

8.
Exp Cell Res ; 405(2): 112685, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34090863

RESUMO

Tumor progression and metastasis, especially in invasive cancers (such as triple-negative breast cancer [TNBC]), depend on angiogenesis, in which vascular epithelial growth factor (VEGF)/vascular epithelial growth factor receptor [1] has a decisive role, followed by the metastatic spread of cancer cells. Although some studies have shown that anti-VEGFR2/VEGF monoclonal antibodies demonstrated favorable results in the clinic, this approach is not efficient, and further investigations are needed to improve the quality of cancer treatment. Besides, the increased expression of epithelial cell adhesion molecule (EpCAM) in various cancers, for instance, invasive breast cancer, contributes to angiogenesis, facilitating the migration of tumor cells to other parts of the body. Thus, the main goal of our study was to target either VEGFR2 or EpCAM as pivotal players in the progression of angiogenesis in breast cancer. Regarding cancer therapy, the production of bispecific antibodies is easier and more cost-effective compared to monoclonal antibodies, targeting more than one antigen or receptor; for this reason, we produced a recombinant antibody to target cells expressing EpCAM and VEGFR2 via a bispecific antibody to decrease the proliferation and metastasis of tumor cells. Following the cloning and expression of our desired anti-VEGFR2/EPCAM sequence in E. coli, the accuracy of the expression was confirmed by Western blot analysis, and its binding activities to VEGFR2 and EPCAM on MDA-MB-231 and MCF-7 cell lines were respectively indicated by flow cytometry. Then, its anti-proliferative potential was indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assay to evaluate inhibitory effects of the antibody on tumor cells. Subsequently, the data indicated that migration, invasion, and angiogenesis were inhibited in breast cancer cell lines via the bispecific antibody. Furthermore, cytokine analysis indicated that the bispecific antibody could moderate interleukin 8 (IL-8) and IL-6 as key mediators in angiogenesis progression in breast cancer. Thus, our bispecific antibody could be considered as a promising candidate tool to decrease angiogenesis in TNBC.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Biespecíficos/farmacologia , Molécula de Adesão da Célula Epitelial/imunologia , Neovascularização Patológica/tratamento farmacológico , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/efeitos dos fármacos , Humanos , Morfogênese/imunologia
9.
Exp Mol Pathol ; 115: 104443, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380056

RESUMO

Activated leukocyte cell adhesion molecule (ALCAM) or CD166 is a 100 to 105 KDa transmembrane immunoglobulin which is involved in activation of T-cells, hematopoiesis, neutrophils trans-endothelial migration, angiogenesis, inflammation and tumor propagation and invasiveness through formation of homophilic and heterophilic interactions. Recently, many studies have proposed that the expression pattern of ALCAM is highly associated with the grade, stage and invasiveness of tumors. Although ALCAM is a valuable prognostic marker in different carcinomas, similar expression patterns in different tumor types may be associated with completely different prognostic states, making it to be a tumor-type-dependent prognostic marker. In addition, ALCAM isoforms provide ways for primary detection of tumor cells with metastatic potential. More importantly, this prognostic marker has shown to be considerably dependent on the cytoplasmic and membranous expression, indirect and direct regulation of post-transcriptional molecules, pro-apoptotic proteins functionalities and several other oncogenic proteins or signalling pathways. This review mainly focuses on the pathways involved in expression of ALCAM and its prognostic value of in different types of cancers and the way in which it is regulated.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Molécula de Adesão de Leucócito Ativado/química , Molécula de Adesão de Leucócito Ativado/genética , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Prognóstico
10.
Cell Biochem Funct ; 38(5): 651-659, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32196701

RESUMO

It has been shown that overexpression of activated leukocyte cell adhesion molecule (ALCAM) is involved in development of resistance to tamoxifen therapy and promotion of cell invasion, migration and metastasis in ER+ breast cancer cells. Thus, we hypothesized that blockade of ALCAM interconnections with antibodies could be an effective approach for reversing mentioned negative events associated with ALCAM overexpression in breast cancer cells. Here, an anti-ALCAM scFv was recombinantly expressed and used throughout study for examination of the putative anticancer effects of ALCAM blockade. The anti-ALCAM scFv coding sequence was obtained from GenBank database and after addition of a 6× His-tag moiety, signal peptide and flanking sequences, the whole construct was expressed in Escherichia coli. Tamoxifen resistant MCF7 cells were then pretreat for 24 hours with purified recombinant anti-ALCAM scFv prior to administration of tamoxifen. In parallel, the cytotoxicity profile of anti-ALCAM scFv and tamoxifen co-treatments against tamoxifen resistant and sensitive MCF7 cell lines was also evaluated using CompuSyn software. The invasion/migration inhibitory effects of anti-ALCAM scFv on MDA-MB-231 cells were also evaluated. Pretreatment with anti-ALCAM scFv could successfully enhance anti-proliferative effects of tamoxifen against resistant MCF-7 cell lines. Furthermore, the combination of 19.2:1 of tamoxifen to anti-ALCAM scFv demonstrated synergistic cell inhibitory effect against tamoxifen resistant MCF7 cell lines. Also, incubating MDA-MB-231 cell lines with anti-ALCAM scFv resulted in a 30% and 25% reduction in number of invaded and migrated cells respectively. Overall, application of anti-ALCAM scFv could significantly suppress cancer cells metastasis in vitro and modulate tamoxifen resistant ER+ MCF7 cell line's sensitivity to tamoxifen. SIGNIFICANCE OF THE STUDY: Acquisition of resistance to tamoxifen therapy is one of the major challenges associated with cancer chemotherapy, gradually turning a responsive tumour into a refractory more invasive one which ultimately ends in disease progression and relapse. Here, we reported expression of an anti-ALCAM scFv, capable of increasing the sensitivity of tamoxifen resistant ER+ MCF-7 cells to tamoxifen therapy following a 24-hour pretreatment period. In addition, we demonstrated that the anti-ALCAM scFv monotherapy was also capable of suppressing invasion and migration of MDA-MB-231 cells in Boyden chamber assays.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Proteínas Fetais/antagonistas & inibidores , Tamoxifeno/farmacologia , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Mol Immunol ; 118: 174-181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31884389

RESUMO

T cells are the most predominant effector cells in immune-mediated elimination of cancer and circumventing tumor progression. Among various approaches, T cells activation by specific antibodies independently of their TCR specificity, is considered as an effective approach to circumvent tumor progression. The most common surface marker for all T cells which is crucial for T cell activation is regarded as CD3. Therefore, the goal of our study was to evaluate the preclinical efficacy of recombinant anti-CD3 nanobody. To this end, anti-CD3 sequence, was PCR amplified, following cloning and expression in E.coli and purification, the purified nanobody with a molecular weight of ∼17 kDa was confirmed by western blot. Furthermore, flow cytometry analysis demonstrated that purified nanobody could bind to CD3 on Jurkat cell line. Subsequently, results from inoculation of 3 µg/g of nanobody to tumor bearing balb/c mice indicate inhibition of tumor growth. Furthermore, circulating levels of tumoricidal cytokines such as IL-2 and IFNγ were raised whereas tolerogenic cytokines such as IL-4, 6 and 10 were decreased at the end of the treatment. Moreover, IHC analysis confirmed the presence and also the percentage of TILs in tumor sites in response to anti-CD3 therapy. Hence, our results suggest that the purified anti-CD3 nanobody may become a promising candidate for targeting and activating CTLs to induce anti-tumor responses and may provide groundwork for future studies involving other kind of cancers.


Assuntos
Complexo CD3/imunologia , Fatores Imunológicos/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Feminino , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Linfócitos T/imunologia
12.
Mol Biol Rep ; 47(1): 225-234, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642038

RESUMO

Leukemic cancer stem cells (LSCs), aberrantly overexpressing CD45RA are among the major causes of relapse following chemotherapy in patients with acute myeloid leukemia and serve as a highly sensitive marker for predicting relapse occurrence following chemotherapy. The main purpose of current study was to develop a sensitive approach for detecting LSCs based on a conjugate of an anti-CD45 scFv and quantum dot. The variable light and heavy chain sequences of a recently developed anti-CD45RA monoclonal antibody were derived from hybridoma cells and PCR amplified to construct scFv. Following insertion of scFv gene into a pET32a-lic vector and expression in Escherichia coli and purification, the purified scFv, was conjugated with carbon dots (C dots) and used for the detection of CD45RA +cells while CD45RA-cells served as negative control. Subsequently, Functional activity of the conjugate was analyzed by flow cytometry and ICC to detect the cell surface antigen binding and detection ability. Based on results, purified CD45RA scFv conjugated C dots could specifically recognize CD45RA positive cells, but not any CD45RA negative ones. In conclusion, here we developed a low-cost but very efficient approach for detection of CD45RA positive cells including LSCs.


Assuntos
Citometria de Fluxo/métodos , Imunoconjugados , Leucemia Mieloide Aguda/diagnóstico , Antígenos Comuns de Leucócito/imunologia , Células-Tronco Neoplásicas/patologia , Pontos Quânticos/química , Anticorpos de Cadeia Única , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Separação Celular/métodos , Humanos , Imunoconjugados/química , Células Jurkat , Células K562 , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/patologia , Recidiva , Sensibilidade e Especificidade , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo
13.
J Cell Physiol ; 234(5): 5655-5663, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30515806

RESUMO

It is now fully recognized that along with multiple physiological functions, angiogenesis is also involved in the fundamental process and pathobiology of several disorders including cancer. Recent studies have fully established the role of angiogenesis in cancer progression as well as invasion and metastasis. Consequently, many therapeutic agents such as monoclonal antibodies targeting angiogenesis pathway have been introduced in clinic with the hope for improving the outcomes of cancer therapy. Bevacizumab (Avastin®) was the first anti-vascular endothelial growth factor (VEGF) targeting monoclonal antibody developed with this purpose and soon received its accelerated US Food and Drug Administration (FDA) approval for treatment of patients with metastatic breast cancer in 2008. However, the failure to meet expecting results in different follow-up studies, forced FDA to remove bevacizumab approval for metastatic breast cancer. Investigations have now revealed that while suppressing VEGF pathway initially decreases tumor progression rate and vasculature density, activation of several interrelated pathways and signaling molecules following VEGF blockade compensate the insufficiency of VEGF and initially blocked angiogenesis, explaining in part the failure observed with bevacizumab single therapy. In present review, we introduce some of the main pathways and signaling molecules involved in angiogenesis and then propose how their interconnection may result in development of resistance to bevacizumab.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/efeitos adversos , Animais , Bevacizumab/efeitos adversos , Humanos , Neoplasias/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Hipóxia Tumoral , Microambiente Tumoral
14.
J Pharm Pharmacol ; 70(7): 841-854, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574771

RESUMO

OBJECTIVES: Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy. KEY FINDINGS: Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well. SUMMARY: The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Animais , Humanos
15.
J Drug Target ; 26(8): 649-657, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29169275

RESUMO

Today, intratumoural heterogeneity has been recognised as one of the main causes of cancer treatment failure and drug resistance development through which multiple mechanisms are simultaneously involved. From the broad diversity of cells presented in tumour microenvironment, owing to their proliferative potential and longevity, cancer stem cells (CSCs), are the main cell subpopulation involved in tumour development, propagation, metastatic dissemination and induction of intratumoural heterogeneity. Accordingly, selective targeting and eradication of CSCs may represent a promising approach for cancer therapy and evading drug resistance development. Nanotechnology is an attractive outgrowing field in medicine due to its promising capabilities in solving several obstacles associated with conventional chemotherapy agents including poor solubility, lack of selectivity and high systemic toxicity. Accordingly, multiple types of nanocarriers have been successfully developed for improving selective delivery and reducing non-selective toxicities of CSC-specific chemotherapy agents. In Current review, we mostly focus on examining the role of CSCs in development of intratumoral heterogeneity and introducing recently developed nano delivery systems for more efficient targeting and eradication of them.


Assuntos
Nanoestruturas , Células-Tronco Neoplásicas/metabolismo , Humanos , Microambiente Tumoral
16.
J Cancer Res Ther ; 12(2): 915-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27461674

RESUMO

AIM: Breast cancer is the most common cancer among women worldwide. Science has already proved that some breast cancer genes are inherited from parents. It is generally believed that the probability of cancer diagnosis in carriers of those genes is considerably higher than the normal population. It is in the same direction that modern medicine has introduced prophylactic mastectomy - one of the key preventive methods which is the focus of the present research. Nevertheless, whether women that have been diagnosed with breast cancer would take this approach depends on their local culture and their set of beliefs. In this regard, the present research was meant to evaluate the acceptability rate of prophylactic mastectomy among women in Iran after they are informed of the positive genetic test results. METHODS: Six hundred and five healthy women, who had no history of breast cancer, were selected by nonprobability sampling method. A predesigned questionnaire was filled out by the interviewer. RESULTS: Results showed that about 15% of respondents were willing to pick the prophylactic mastectomy in case they are identified as carriers of breast cancer genes. Twenty-two percent of participants with positive family history was agreed with prophylactic mastectomy while in the negative family history group it was about 14%. CONCLUSION: Preventive mastectomy has a higher rate of acceptability among women who have had a family history of breast cancer. Therefore, it may be concluded that raising public awareness about the advantages of prophylactic mastectomy could help better address breast cancer in Iran.


Assuntos
Atitude Frente a Saúde , Neoplasias da Mama/epidemiologia , Mastectomia , Pré-Medicação , Adolescente , Adulto , Idoso , Neoplasias da Mama/prevenção & controle , Neoplasias da Mama/cirurgia , Feminino , Inquéritos Epidemiológicos , Humanos , Irã (Geográfico)/epidemiologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
17.
BMC Cancer ; 15: 681, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26458542

RESUMO

BACKGROUND: Cancer-testis antigens are among the new promising biomarkers, especially for targeted therapy. Aberrant and specific expression of these proteins has been reported in some tumor tissues. Also understanding their differential role in normal and cancer tissues may introduce them as new candidates for biomarker in cancer. METHODS: AKAP3 expression was investigated in 162 tumors, normal adjacent and normal tissues of the breast with Real-Time PCR. Also the correlation between the gene expression and clinico-pathologic features of the tumors and treatment regimen was evaluated. RESULTS: There was an association between lack of AKAP3 expression in tumor tissues and triple negative status (p=. 03). There was also a correlation between lack of this marker and tumor size (p = .01) and stage (p = .04). Lack of AKAP3 in normal adjacent tissues was associated with poor prognosis. Kaplan Meier plot demonstrated a remarkable better 5-year disease free survival in AKAP3 positive normal adjacent group. CONCLUSIONS: It was found that this relationship is originated from the difference in AKAP3 expression, not therapy distribution between two groups of patients. Thus, it may be a proper biomarker candidate for triple negative breast cancer patients. Also, testing AKAP3 in normal tissue of the patients may be used to predict the outcome of the treatment.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Biomarcadores Tumorais , Expressão Gênica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA