Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 133109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871099

RESUMO

Green (Penicillium digitatum) mold can severely endanger the citrus fruits production and quality. Targeting the protection of lemon fruits from green mold infestations with nanobiotechnology approach, the fenugreek seed mucilage (FM) was extracted and exploited for biosynthesis of selenium (SeNPs) nanoparticles; their nanocomposites (NCs) with chitosan (CT) was constructed and employed as antifungal materials and edible coating (ECs) to protect lemon fruits against green mold. The nanoparticles formation and conjugations were verified by infrared (FTIR) analysis and electron microscopy. The FM-synthesized SeNPs had particles average of 8.35 nm, were the NCs of them with CT had size mean of 49.33 nm and charged with +22.8 mV. The CT/FM/SeNPs composite exhibited superior antifungal actions toward P. digitatum isolates, up to 32.2 mm inhibition diameter and 12.5 mg/mL inhibitory concentration, which exceeded the actions of imazilil. The microscopic screening of exposed P. digitatum to NCs clarified their mycelial destructive action within 30 h. The coating of infected lemons with fabricated NCs led to complete elimination of green mold development after 10 days of coating, without any infestation remarks. The innovative fabrication of NCs from CT/FM/SeNPs is strongly suggested to protect citrus crops from green mold and preserve fruits quality.


Assuntos
Quitosana , Citrus , Nanocompostos , Mucilagem Vegetal , Sementes , Selênio , Trigonella , Quitosana/química , Quitosana/farmacologia , Nanocompostos/química , Citrus/química , Citrus/microbiologia , Sementes/química , Trigonella/química , Selênio/química , Selênio/farmacologia , Mucilagem Vegetal/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas/química , Penicillium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
2.
Front Chem ; 12: 1357330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410818

RESUMO

The main objective of this study is to synthesize and characterize of a new three complexes of Pd (II), Cu (II), and Cu (I) metal ions with novel ligand ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene)acetohydrazide) H2LB. The structural composition of new compounds was assessed using several analytical techniques including FT-IR, 1H-NMR, electronic spectra, powder X-ray diffraction, and thermal behavior analysis. The Gaussian09 program employed the Density Functional Theory (DFT) approach to optimize the geometry of all synthesized compounds, therefore obtaining the most favorable structures and crucial parameters. An investigation was conducted to examine the impact of γ-irradiation on ligands and complexes. Before and after γ-irradiation, the antimicrobial efficiency was investigated for the activity of ligands and their chelates. The Cu(I) complex demonstrated enhanced antibacterial activity after irradiation, as well as other standard medications such as ampicillin and gentamicin. Similarly, the Cu(I) complex exhibited superior activity against antifungal species relative to the standard drug Nystatin. The docking investigation utilized the target location of the topoisomerase enzyme (2xct) chain A.

3.
Int J Med Mushrooms ; 24(11): 1-20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374945

RESUMO

Mushrooms have become an important way to safely supply the body with the daily needs of organic selenium and they also possess remarkable medicinal properties. In this study, we examined the ability of the Pleurotus ostreatus mushroom to grow in selenium (Se) and its ability to accumulate and convert Se from inorganic form to organic form during growth. Additionally, we achieved the potential anticancer properties of mushroom extract in colon cancer cells using the CaCo-2 cell and the normal human colon mucosal epithelial cell line, NCM-460 cell line. Interestingly, Se-enriched mushroom extract (SME) showed a competitive regulation in colon cancer cell line; CaCo-2 cell line indicated by cell morphology, the number of survived cells, lactate dehydrogenase (LDH) production, and cell viability rate. Moreover, SME treatment regulates the expression profile of the cancer cell proliferation factor Raf-1 and pro-apoptotic related factors P53 and Caspase-3 Furthermore, the production of inflammatory-regulated cytokines, including interleukin 6 (IL-6) and IL-10, increased. At the same time, the level of produced tumor necrosis factor-alpha (TNF-α) markedly decreased in a dose and time-dependent of colon cancer-treated cells. Notably, the purified selenomethionine (SeMe) showed sufficient inhibition of colon cancer proliferation compared with the inorganic form of selenium (sodium selenite) via blocking the Raf/MEK/ERK signaling pathway. In addition, SeMe treatment also stimulated the production of IL-6 and IL-10 while decreasing the production of TNF-α, which plays a crucial role in the necrotic event. Meanwhile, the SeMe treatment showed a neglected cytotoxic effect in the normal colon epithelial cells. Collectively, these findings indicate that the fruiting bodies of Se-enriched mushrooms revealed anti-colon cancer activity via targeting Raf-1 signaling pathway and increasing the production of IL-6 and IL-10.


Assuntos
Neoplasias do Colo , Pleurotus , Selênio , Animais , Humanos , Antioxidantes/metabolismo , Células CACO-2 , Neoplasias do Colo/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Pleurotus/química , Selênio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Polymers (Basel) ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631998

RESUMO

The protection of persimmon fruits (Diospyros kaki L.) from postharvest fungal infestation with Alternaria alternata (A. alternate; black rot) is a major agricultural and economic demand worldwide. Edible coatings (ECs) based on biopolymers and phytocompounds were proposed to maintain fruit quality, especially with nanomaterials' applications. Chitosan nanoparticles (NCt), rosmarinic acid bio-mediated selenium nanoparticles (RA/SeNPs) and their composites were produced, characterized and evaluated as ECs for managing persimmon black rot. The constructed NCt, RA/SeNPs and NCt/RA/SeNPs composite had diminished particles' size diameters. The ECs solution of 1% NCt and NCt/RA/SeNPs composite led to a significant reduction of A. alternata radial growth in vitro, with 77.4 and 97.2%, respectively. The most powerful ECs formula contained 10 mg/mL from NCt/RA/SeNPs composite, which significantly reduced fungal growth than imazalil fungicide. The coating of persimmon with nanoparticles-based ECs resulted in a significant reduction of black rot disease severity and incidence in artificially infected fruits; the treatment with 1% of NCt/RA/SeNPs could completely (100%) hinder disease incidence and severity in coated fruits, whereas imazalil reduced them by 88.6 and 73.4%, respectively. The firmness of fruits is greatly augmented after ECs treatments, particularly with formulated coatings with 1% NCt/RA/SeNPs composite, which maintain fruits firmness by 85.7%. The produced ECs in the current study, based on NCt/RA/SeNPs composite, are greatly recommended as innovatively constructed human-friendly matrix to suppress the postharvest destructive fungi (A. alternata) and maintain the shelf-life and quality of persimmon fruits.

5.
J Nanobiotechnology ; 20(1): 182, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392922

RESUMO

BACKGROUND: Citrus production and trading are seriously affected by fungal decays worldwide; the green mold infection by Penicillium digitatum could be the most disastrous. The substitutions of chemical and synthetic fungicides with effectual natural alternatives are global demands; plant extract from pomegranates peels (PPE), biosynthesized selenium nanoparticles with PPE (PPE/SeNPs) and chitosan nanoparticles (NCT) were suggested as efficacious fungicidal agents/nanocomposites to control P. digitatum strains. METHOD: PPE from Punica granatum was extracted and employed directly for synthesizing SeNPs, whereas NCT was produced using ionic gelation method of chitosan extracted from white prawn (Fenneropenaeus indicus) shells. The physiochemical, biochemical and structural characterization of generated molecules were conducted using infra-red spectroscopy, particles' size (Ps) and charge assessment and electron microscopes imaging. Antifungal potentialities were investigated in vitro and in infected fruits with P. digitatum by applying NCT nanocomposites-based edible coating. RESULTS: The synthesis of PPE-synthesized SeNPs and NCT was successfully achieved, the molecular bonding in synthesized agents/composites were proved with infrared spectroscopy to have both biochemical and physical interactions. The nanoparticles had 82.72, 9.41 and 85.17 nm mean diameters for NCT, PPE/SeNPs and NCT/PPE/SeNPs nanocomposites, respectively. The nanoparticles had homogenous spherical shapes and good distribution attributes. The entire agents/nanocomposites exhibited potent fungicidal potentialities toward P. digitatum isolates; NCT/PPE/SeNPs nanocomposite was the most forceful and significantly exceeded the fungicidal action of standard fungicide. The direct treatment of fungal mycelia with NCT/PPE/SeNPs nanocomposite led to remarkable lysis and deformations of P. digitatum hyphae within 12 h of treatment. The coating of infected orange with NCT-based edible coatings reduced the green mold infection signs by 91.7, 95.4 and 100%, for NCT, NCT/PPE and NCT/PPE/SeNPs based coating solutions, respectively. CONCLUSIONS: NCT, PPE-synthesized SeNPs, and their innovative nanocomposites NCT/PPE/SeNPs are convincingly recommended for formulating effectual antifungal and edible coatings to eliminate postharvest fungal pathogen, both with protection from their invasion or with destructing their existing infections.


Assuntos
Quitosana , Citrus , Filmes Comestíveis , Fungicidas Industriais , Nanopartículas , Punica granatum , Selênio , Antifúngicos/farmacologia , Quitosana/química , Frutas/química , Frutas/microbiologia , Fungicidas Industriais/análise , Fungicidas Industriais/farmacologia , Selênio/farmacologia
6.
BMC Complement Altern Med ; 14: 494, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25510860

RESUMO

BACKGROUND: Acetaminophen (APAP)-induced toxicity is a predominant cause of acute hepatic and renal failure. In both humans and rodents toxicity begins with a reactive metabolite that binds to proteins. This leads to mitochondrial dysfunction and nuclear DNA fragmentation resulting in necrotic cell death. Pleurotus ostreatus (an edible oyster mushroom) is well recognized as a flavourful food, as well as a medicinal supplement. In the present study, we evaluated the role of Pleurotus ostreatus in the protection against APAP-induced hepato-renal toxicity. We also explored the mechanism by which Pleurotus ostreatus exerts its effects. METHODS: Ninety adult male Swiss albino mice were divided into three groups (30 mice/group). Mice were offered normal diet (control and APAP groups), or diet supplemented with 10% Pleurotus ostreatus (APAP + Pleurotus ostreatus) for 10 days. Mice were either treated with vehicle (control group, single intra-peritoneal injection.), or APAP (APAP and APAP + Pleurotus ostreatus groups, single intra-peritoneal injection, 500 mg/kg), 24 hours after the last meal. RESULTS: APAP increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) glutamate dehydrogenase (GDH), creatinine, blood urea nitrogen (BUN), urinary kidney injury molecule-1 (KIM-1), and hepatic and renal malondialdehyde (MDA) content. APAP decreased hepatic and renal glutathione (GSH) content, as well as glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Supplementation with Pleurotus ostreatus significantly reduced APAP-induced elevated levels of ALT, AST, GDH, creatinine, BUN, KIM-1and MDA, while GSH level, and GSH-Px and SOD activities were significantly increased. Our findings were further validated by histopathology; treatment with Pleurotus ostreatus significantly decreased APAP-induced cell necrosis in liver and kidney tissues. CONCLUSIONS: We report here that the antioxidant effect of Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress accompanying APAP over-dose, with subsequent clinically beneficial effects on liver and kidney tissues.


Assuntos
Acetaminofen/efeitos adversos , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Nefropatias/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pleurotus , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Aspartato Aminotransferases/sangue , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Suplementos Nutricionais , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Mitocôndrias/metabolismo , Necrose , Oxirredução , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA