Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Semantics ; 15(1): 2, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650032

RESUMO

The more science advances, the more questions are asked. This compounding growth can make it difficult to keep up with current research directions. Furthermore, this difficulty is exacerbated for junior researchers who enter fields with already large bases of potentially fruitful research avenues. In this paper, we propose a novel task and a recommender system for research directions, RecSOI, that draws from statements of ignorance (SOIs) found in the research literature. By building researchers' profiles based on textual elements, RecSOI generates personalized recommendations of potential research directions tailored to their interests. In addition, RecSOI provides context for the recommended SOIs, so that users can quickly evaluate how relevant the research direction is for them. In this paper, we provide an overview of RecSOI's functioning, implementation, and evaluation, demonstrating its effectiveness in guiding researchers through the vast landscape of potential research directions.


Assuntos
Pesquisa Biomédica , Pesquisa , Humanos
2.
J Biomed Inform ; 143: 104405, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37270143

RESUMO

BACKGROUND: Scientific discovery progresses by exploring new and uncharted territory. More specifically, it advances by a process of transforming unknown unknowns first into known unknowns, and then into knowns. Over the last few decades, researchers have developed many knowledge bases to capture and connect the knowns, which has enabled topic exploration and contextualization of experimental results. But recognizing the unknowns is also critical for finding the most pertinent questions and their answers. Prior work on known unknowns has sought to understand them, annotate them, and automate their identification. However, no knowledge-bases yet exist to capture these unknowns, and little work has focused on how scientists might use them to trace a given topic or experimental result in search of open questions and new avenues for exploration. We show here that a knowledge base of unknowns can be connected to ontologically grounded biomedical knowledge to accelerate research in the field of prenatal nutrition. RESULTS: We present the first ignorance-base, a knowledge-base created by combining classifiers to recognize ignorance statements (statements of missing or incomplete knowledge that imply a goal for knowledge) and biomedical concepts over the prenatal nutrition literature. This knowledge-base places biomedical concepts mentioned in the literature in context with the ignorance statements authors have made about them. Using our system, researchers interested in the topic of vitamin D and prenatal health were able to uncover three new avenues for exploration (immune system, respiratory system, and brain development) by searching for concepts enriched in ignorance statements. These were buried among the many standard enriched concepts. Additionally, we used the ignorance-base to enrich concepts connected to a gene list associated with vitamin D and spontaneous preterm birth and found an emerging topic of study (brain development) in an implied field (neuroscience). The researchers could look to the field of neuroscience for potential answers to the ignorance statements. CONCLUSION: Our goal is to help students, researchers, funders, and publishers better understand the state of our collective scientific ignorance (known unknowns) in order to help accelerate research through the continued illumination of and focus on the known unknowns and their respective goals for scientific knowledge.


Assuntos
Bases de Conhecimento , Conhecimento , Processamento de Linguagem Natural , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro , Publicações , Vitamina D
3.
Front Bioinform ; 2: 1054578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568701

RESUMO

Molecular "cartoons," such as pathway diagrams, provide a visual summary of biomedical research results and hypotheses. Their ubiquitous appearance within the literature indicates their universal application in mechanistic communication. A recent survey of pathway diagrams identified 64,643 pathway figures published between 1995 and 2019 with 1,112,551 mentions of 13,464 unique human genes participating in a wide variety of biological processes. Researchers generally create these diagrams using generic diagram editing software that does not itself embody any biomedical knowledge. Biomedical knowledge graphs (KGs) integrate and represent knowledge in a semantically consistent way, systematically capturing biomedical knowledge similar to that in molecular cartoons. KGs have the potential to provide context and precise details useful in drawing such figures. However, KGs cannot generally be translated directly into figures. They include substantial material irrelevant to the scientific point of a given figure and are often more detailed than is appropriate. How could KGs be used to facilitate the creation of molecular diagrams? Here we present a new approach towards cartoon image creation that utilizes the semantic structure of knowledge graphs to aid the production of molecular diagrams. We introduce a set of "semantic graphical actions" that select and transform the relational information between heterogeneous entities (e.g., genes, proteins, pathways, diseases) in a KG to produce diagram schematics that meet the scientific communication needs of the user. These semantic actions search, select, filter, transform, group, arrange, connect and extract relevant subgraphs from KGs based on meaning in biological terms, e.g., a protein upstream of a target in a pathway. To demonstrate the utility of this approach, we show how semantic graphical actions on KGs could have been used to produce three existing pathway diagrams in diverse biomedical domains: Down Syndrome, COVID-19, and neuroinflammation. Our focus is on recapitulating the semantic content of the figures, not the layout, glyphs, or other aesthetic aspects. Our results suggest that the use of KGs and semantic graphical actions to produce biomedical diagrams will reduce the effort required and improve the quality of this visual form of scientific communication.

4.
Bioinform Adv ; 1(1): vbab012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34661112

RESUMO

MOTIVATION: Science progresses by posing good questions, yet work in biomedical text mining has not focused on them much. We propose a novel idea for biomedical natural language processing: identifying and characterizing the questions stated in the biomedical literature. Formally, the task is to identify and characterize statements of ignorance, statements where scientific knowledge is missing or incomplete. The creation of such technology could have many significant impacts, from the training of PhD students to ranking publications and prioritizing funding based on particular questions of interest. The work presented here is intended as the first step towards these goals. RESULTS: We present a novel ignorance taxonomy driven by the role statements of ignorance play in research, identifying specific goals for future scientific knowledge. Using this taxonomy and reliable annotation guidelines (inter-annotator agreement above 80%), we created a gold standard ignorance corpus of 60 full-text documents from the prenatal nutrition literature with over 10 000 annotations and used it to train classifiers that achieved over 0.80 F1 scores. AVAILABILITY AND IMPLEMENTATION: Corpus and source code freely available for download at https://github.com/UCDenver-ccp/Ignorance-Question-Work. The source code is implemented in Python.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA