Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(9): 2364-2377, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966188

RESUMO

Wastewater-based epidemiology (WBE) for monitoring COVID-19 has been largely used to detect the spread of the disease at the community level. From February to December 2022, we collected 24-h composite sewage samples from dormitory buildings in George Mason University (Fairfax, Virginia, USA) housing approximately 5,200 resident students. SARS-CoV-2 RNA extraction was achieved using an automated system based on magnetic nanoparticles. Analysis of SARS-CoV-2 RNA was performed using reverse transcription quantitative PCR based on the Centers for Disease Control and Prevention (CDC) N1 and N2 assays. From the 362 samples collected, 86% showed positive detection of SARS-CoV-2 RNA. Wastewater monitoring was able to detect SARS-CoV-2 RNA in 96% of the samples from buildings housing students with COVID-19. Over the period of study, we observed significant correlations between the SARS-CoV-2 concentration (copy number mL-1) in wastewater and the number of positive cases on campus based on individual saliva testing. Although several reports have been published on the wastewater monitoring of COVID-19 in university campuses, our study is one of the very few that provides results that were obtained during the last phase of the pandemic (roughly the year 2022), when the large majority of students were vaccinated and back on campus.


Assuntos
COVID-19 , Águas Residuárias , Estados Unidos , Humanos , RNA Viral , SARS-CoV-2/genética , Habitação , Universidades , COVID-19/epidemiologia
2.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894742

RESUMO

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

3.
ISME J ; 15(10): 2883-2891, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33888864

RESUMO

Biogeography of macro- and micro-organisms in the deep sea is, in part, shaped by naturally occurring heterogeneous habitat features of geological and biological origin such as seeps, vents, seamounts, whale and wood-falls. Artificial features including shipwrecks and energy infrastructure shape the biogeographic patterns of macro-organisms; how they influence microorganisms is unclear. Shipwrecks may function as islands of biodiversity for microbiomes, creating a patchwork of habitats with influence radiating out into the seabed. Here we show microbiome richness and diversity increase as a function of proximity to the historic deep-sea shipwreck Anona in the Gulf of Mexico. Diversity and richness extinction plots provide evidence of an island effect on microbiomes. A halo of core taxa on the seabed was observed up to 200 m away from the wreck indicative of the transition zone from shipwreck habitat to the surrounding environment. Transition zones around natural habitat features are often small in area compared to what was observed at Anona indicating shipwrecks may exert a large sphere of influence on seabed microbiomes. Historic shipwrecks are abundant, isolated habitats with global distribution, providing a means to explore contemporary processes shaping biogeography on the seafloor. This work is a case study for how built environments impact microbial biodiversity and provides new information on how arrival of material to the seafloor shapes benthic microbiomes.


Assuntos
Ecossistema , Microbiota , Biodiversidade , Golfo do México
4.
Front Microbiol ; 12: 636054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717029

RESUMO

Marine biofilms are essential biological components that transform built structures into artificial reefs. Anthropogenic contaminants released into the marine environment, such as crude oil and chemical dispersant from an oil spill, may disrupt the diversity and function of these foundational biofilms. To investigate the response of marine biofilm microbiomes from distinct environments to contaminants and to address microbial functional response, biofilm metagenomes were analyzed from two short-term microcosms, one using surface seawater (SSW) and the other using deep seawater (DSW). Following exposure to crude oil, chemical dispersant, and dispersed oil, taxonomically distinct communities were observed between microcosms from different source water challenged with the same contaminants and higher Shannon diversity was observed in SSW metagenomes. Marinobacter, Colwellia, Marinomonas, and Pseudoalteromonas phylotypes contributed to driving community differences between SSW and DSW. SSW metagenomes were dominated by Rhodobacteraceae, known biofilm-formers, and DSW metagenomes had the highest abundance of Marinobacter, associated with hydrocarbon degradation and biofilm formation. Association of source water metadata with treatment groups revealed that control biofilms (no contaminant) harbor the highest percentage of significant KEGG orthologs (KOs). While 70% functional similarity was observed among all metagenomes from both experiments, functional differences between SSW and DSW metagenomes were driven primarily by membrane transport KOs, while functional similarities were attributed to translation and signaling and cellular process KOs. Oil and dispersant metagenomes were 90% similar to each other in their respective experiments, which provides evidence of functional redundancy in these microbiomes. When interrogating microbial functional redundancy, it is crucial to consider how composition and function evolve in tandem when assessing functional responses to changing environmental conditions within marine biofilms. This study may have implications for future oil spill mitigation strategies at the surface and at depth and also provides information about the microbiome functional responses of biofilms on steel structures in the marine built environment.

5.
Sci Rep ; 8(1): 9057, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955123

RESUMO

More than 2,000 historic shipwrecks spanning 500 years of history, rest on the Gulf of Mexico seafloor. Shipwrecks serve as artificial reefs and hotspots of biodiversity by providing hard substrate, something rare in deep ocean regions. The Deepwater Horizon (DWH) spill discharged crude oil into the deep Gulf. Because of physical, biological, and chemical interactions, DWH oil was deposited on the seafloor, where historic shipwrecks are present. This study examined sediment microbiomes at seven historic shipwrecks. Steel-hulled, World War II-era shipwrecks and wooden-hulled, 19th century shipwrecks within and outside of the surface oiled area and subsurface plume were examined. Analysis of 16S rRNA sequence libraries, sediment radiocarbon age data, sedimentation rates, and hydrocarbons revealed that the German U-boat U-166 and the wooden-hulled sailing vessel known as the Mardi Gras Wreck, both in the Mississippi Canyon leasing area, were exposed to deposited oil during a rapid sedimentation event. Impacts to shipwreck microbiomes included a significant increase in Piscirickettsiaceae-related sequences in surface sediments, and reduced biodiversity relative to unimpacted sites. This study is the first to address the impact of the spill on shipwreck-associated microbiomes, and to explore how shipwrecks themselves influence microbiome diversity in the deep sea.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Água do Mar/microbiologia , Navios , Poluentes Químicos da Água/efeitos adversos , Archaea/genética , Sequência de Bases , Amplificação de Genes , Golfo do México , Hidrocarbonetos/análise , Petróleo/análise , Poluição por Petróleo/análise , Filogenia , Piscirickettsiaceae/genética , RNA Ribossômico 16S/genética , Datação Radiométrica , Poluentes Químicos da Água/análise
6.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222221

RESUMO

Factors driving the distribution of marine microorganisms are widely debated and poorly understood. Recent studies show that free-living marine microbes exhibit geographical patterns indicative of limited dispersal. In contrast, host-associated microbes face a different set of dispersal challenges, and hosts may function as habitat 'islands' for resident microbial populations. Here, we examine the biogeographical distributions of planktonic and adjacent coral-associated bacterial communities across the Hawaiian Archipelago, Johnston Atoll (∼1400 km southwest of Hawaii) and American Samoa in the Pacific Ocean and investigate the potential underlying processes driving observed patterns. Statistical analyses of bacterial community structure, determined using a small-subunit ribosomal RNA gene-based approach, showed that bacterioplankton and coral-associated bacterial communities were distinct, and correlated with geographical distance between sites. In addition, biogeographical patterns of bacterial associates paralleled those of their host coral Porites lobata, highlighting the specificity of these associations and the impact that host dispersal may have on bacterial biogeography. Planktonic and coral-associated bacterial communities from distant Johnston Atoll were shown to be connected with communities from the center of the Hawaiian Archipelago, a pattern previously observed in fish and invertebrates. No significant correlations were detected with habitat type, temperature or depth. However, non-distance-based geographical groupings were detected, indicating that, in addition to dispersal, unidentified environmental factors also affected the distributions of bacterial communities investigated here.


Assuntos
Antozoários/microbiologia , Biodiversidade , Ecossistema , Plâncton/classificação , Microbiologia da Água , Samoa Americana , Animais , Peixes , Geografia , Havaí , Ilhas , Oceano Pacífico , Plâncton/crescimento & desenvolvimento
7.
Biol Bull ; 208(2): 145-55, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15837964

RESUMO

The densities of chemoautotrophic and methanotrophic symbiont morphotypes were determined in life- history stages (post-larvae, juveniles, adults) of two species of mussels (Bathymodiolus azoricus and B. heckerae) from deep-sea chemosynthetic environments (the Lucky Strike hydrothermal vent and the Blake Ridge cold seep) in the Atlantic Ocean. Both symbiont morphotypes were observed in all specimens and in the same relative proportions, regardless of life-history stage. The relative abundance of symbiont morphotypes, determined by transmission electron microscopy, was different in the two species: chemoautotrophs were dominant (13:1-18:1) in B. azoricus from the vent site; methanotrophs were dominant (2:1-3:1) in B. heckerae from the seep site. The ratio of CH4:H2S is proposed as a determinant of the relative abundance of symbiont types: where CH4:H2S is less than 1, as at the Lucky Strike site, chemoautotrophic symbionts dominate; where CH4:H2S is greater than 2, as at the seep site, methanotrophs dominate. Organic carbon and nitrogen isotopic compositions of B. azoricus (delta 13C = -30 per thousand; delta 15N = -9 per thousand) and B. heckerae (delta 13C = -56 per thousand; delta 15N = -2 per thousand) varied little among life-history stages and provided no record of a larval diet of photosynthetically derived organic material in the post-larval and juvenile stages.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bivalves/microbiologia , Bivalves/fisiologia , Brânquias/ultraestrutura , Simbiose , Fatores Etários , Animais , Oceano Atlântico , Bivalves/ultraestrutura , Contagem de Colônia Microbiana , Marcação por Isótopo , Microscopia Eletrônica de Transmissão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA