Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Rev Drug Discov ; 23(7): 525-545, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38773351

RESUMO

Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Animais , Indústria Farmacêutica , Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/farmacologia , Drogas em Investigação/efeitos adversos
3.
Cells ; 11(10)2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626744

RESUMO

Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a "clean" AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as "high" or "low" risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.


Assuntos
Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Animais , Trato Gastrointestinal/metabolismo , Ligantes , Mamíferos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
4.
Diabetes ; 71(5): 1023-1033, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100352

RESUMO

Epigenetic regulation is an important factor in glucose metabolism, but underlying mechanisms remain largely unknown. Here we investigated epigenetic control of systemic metabolism by bromodomain-containing proteins (Brds), which are transcriptional regulators binding to acetylated histone, in both intestinal cells and mice treated with the bromodomain inhibitor JQ-1. In vivo treatment with JQ-1 resulted in hyperglycemia and severe glucose intolerance. Whole-body or tissue-specific insulin sensitivity was not altered by JQ-1; however, JQ-1 treatment reduced insulin secretion during both in vivo glucose tolerance testing and ex vivo incubation of isolated islets. JQ-1 also inhibited expression of fibroblast growth factor (FGF) 15 in the ileum and decreased FGF receptor 4-related signaling in the liver. These adverse metabolic effects of Brd4 inhibition were fully reversed by in vivo overexpression of FGF19, with normalization of hyperglycemia. At a cellular level, we demonstrate Brd4 binds to the promoter region of FGF19 in human intestinal cells; Brd inhibition by JQ-1 reduces FGF19 promoter binding and downregulates FGF19 expression. Thus, we identify Brd4 as a novel transcriptional regulator of intestinal FGF15/19 in ileum and FGF signaling in the liver and a contributor to the gut-liver axis and systemic glucose metabolism.


Assuntos
Hiperglicemia , Proteínas Nucleares , Animais , Epigênese Genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Diabetes ; 68(8): 1614-1623, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167880

RESUMO

The kinin B1 receptor (B1R) plays a role in inflammatory and metabolic processes. B1R deletion (B1 -/-) protects mice from diet-induced obesity and improves insulin and leptin sensitivity. In contrast, genetic reconstitution of B1R exclusively in adipose tissue reverses the lean phenotype of B1 -/- mice. To study the cell-nonautonomous nature of these effects, we transplanted epididymal white adipose tissue (eWAT) from wild-type donors (B1 +/+) into B1 -/- mice (B1 +/+→B1 -/-) and compared them with autologous controls (B1 +/+→B1 +/+ or B1 -/-→B1 -/-). We then fed these mice a high-fat diet for 16 weeks and investigated their metabolic phenotypes. B1 +/+→B1 -/- mice became obese but not glucose intolerant or insulin resistant, unlike B1 -/-→B1 -/- mice. Moreover, the endogenous adipose tissue of B1 +/+→B1 -/- mice exhibited higher expression of adipocyte markers (e.g., Fabp4 and Adipoq) and changes in the immune cell pool. These mice also developed fatty liver. Wild-type eWAT transplanted into B1 -/- mice normalized circulating insulin, leptin, and epidermal growth factor levels. In conclusion, we demonstrated that B1R in adipose tissue controls the response to diet-induced obesity by promoting adipose tissue expansion and hepatic lipid accumulation in cell-nonautonomous manners.


Assuntos
Tecido Adiposo Branco/metabolismo , Receptor B1 da Bradicinina/metabolismo , Tecido Adiposo Branco/transplante , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Citometria de Fluxo , Glucose/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Receptor B1 da Bradicinina/genética , Aumento de Peso/genética , Aumento de Peso/fisiologia
6.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843877

RESUMO

Pharmacologic inhibition of the renal sodium/glucose cotransporter-2 induces glycosuria and reduces glycemia. Given that SGLT2 inhibitors (SGLT2i) reduce mortality and cardiovascular risk in type 2 diabetes, improved understanding of molecular mechanisms mediating these metabolic effects is required. Treatment of obese but nondiabetic mice with the SGLT2i canagliflozin (CANA) reduces adiposity, improves glucose tolerance despite reduced plasma insulin, increases plasma ketones, and improves plasma lipid profiles. Utilizing an integrated transcriptomic-metabolomics approach, we demonstrate that CANA modulates key nutrient-sensing pathways, with activation of 5' AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR), independent of insulin or glucagon sensitivity or signaling. Moreover, CANA induces transcriptional reprogramming to activate catabolic pathways, increase fatty acid oxidation, reduce hepatic steatosis and diacylglycerol content, and increase hepatic and plasma levels of FGF21. Given that these phenotypes mirror the effects of FGF21 to promote lipid oxidation, ketogenesis, and reduction in adiposity, we hypothesized that FGF21 is required for CANA action. Using FGF21-null mice, we demonstrate that FGF21 is not required for SGLT2i-mediated induction of lipid oxidation and ketogenesis but is required for reduction in fat mass and activation of lipolysis. Taken together, these data demonstrate that SGLT2 inhibition triggers a fasting-like transcriptional and metabolic paradigm but requires FGF21 for reduction in adiposity.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Glicemia , Canagliflozina/antagonistas & inibidores , Diabetes Mellitus Tipo 2/metabolismo , Diglicerídeos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Jejum , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/genética , Insulina/sangue , Cetonas/sangue , Metabolismo dos Lipídeos , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo
7.
Stem Cell Rev Rep ; 15(1): 48-58, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30338498

RESUMO

The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes. An autocrine loop between receptor activation and bradykinin secretion is suggested, since bradykinin secretion is significantly reduced in the presence of the kinin-B2 receptor antagonist HOE-140 during differentiation. Expression of skeletal muscle markers and regenerative capacity were decreased after pharmacological inhibition or genetic ablation of the B2 receptor, while its antagonism increased the number of myoblasts in culture. In summary, the present work reveals to date no functions described for the B2 receptor in muscle regeneration due to the control of proliferation and differentiation of muscle precursor cells.


Assuntos
Diferenciação Celular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Receptor B2 da Bradicinina/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Bradicinina/metabolismo , Cardiotoxinas/administração & dosagem , Linhagem Celular , Proliferação de Células , Citoesqueleto/metabolismo , Deleção de Genes , Cininogênios/genética , Cininogênios/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor B2 da Bradicinina/genética
8.
Endocrinology ; 158(8): 2441-2452, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637315

RESUMO

Prenatal undernutrition and low birth weight are associated with risk of type 2 diabetes and obesity. Prenatal caloric restriction results in low birth weight, glucose intolerance, obesity, and reduced plasma bile acids (BAs) in offspring mice. Because BAs can regulate systemic metabolism and glucose homeostasis, we hypothesized that BA supplementation could prevent diet-induced obesity and glucose intolerance in this model of developmental programming. Pregnant dams were food restricted by 50% from gestational days 12.5 to 18.5. Offspring of both undernourished (UN) and control (C) dams given unrestricted diets were weaned to high-fat diets with or without supplementation with 0.25% w/w ursodeoxycholic acid (UDCA), yielding four experimental groups: C, UN, C + UDCA, and UN + UDCA. Glucose homeostasis, BA composition, liver and intestinal gene expression, and microbiota composition were analyzed in the four groups. Although UDCA supplementation ameliorated diet-induced obesity in C mice, there was no effect in UN mice. UDCA similarly lowered fasting insulin, and improved glucose tolerance, pyruvate tolerance, and liver steatosis in C, but not UN, animals. BA composition differed significantly, and liver and ileal expression of genes involved in BA metabolism (Cyp7b1, Shp) were differentially induced by UDCA in C vs UN animals. Bacterial taxa in fecal microbiota correlated with treatment groups and metabolic parameters. In conclusion, prenatal undernutrition alters responsiveness to the metabolic benefits of BA supplementation, with resistance to the weight-lowering and insulin-sensitizing effects of UDCA supplementation. Our findings suggest that BA metabolism may be a previously unrecognized contributor to developmentally programmed diabetes risk.


Assuntos
Ácidos e Sais Biliares/farmacologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Desnutrição , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/química , Glicemia , Dieta Hiperlipídica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ácido Ursodesoxicólico/administração & dosagem , Ácido Ursodesoxicólico/farmacologia
9.
Cell Metab ; 25(3): 559-571, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273478

RESUMO

Both human and animal studies indicate that environmental exposures experienced during early life can robustly influence risk for adult disease. Moreover, environmental exposures experienced by parents during either intrauterine or postnatal life can also influence the health of their offspring, thus initiating a cycle of disease risk across generations. In this Perspective, we focus on epigenetic mechanisms in germ cells, including DNA methylation, histone modification, and non-coding RNAs, which collectively may provide a non-genetic molecular legacy of prior environmental exposures and influence transcriptional regulation, developmental trajectories, and adult disease risk in offspring.


Assuntos
Epigênese Genética , Características da Família , Doenças Metabólicas/genética , Animais , Humanos , Padrões de Herança/genética , Fenótipo , Fatores de Risco
10.
Diabetes Metab Syndr Obes ; 8: 399-407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346752

RESUMO

The kallikrein-kinin system is well known for its role in pain and inflammation, and has been shown recently by our group to have a role also in the regulation of energy expenditure. We have demonstrated that B1 receptor knockout (B1KO) mice are resistant to obesity induced by a high-fat diet (HFD) and that B1 receptor expression in adipocytes regulates glucose tolerance and predisposition to obesity. However, it is also known that in the absence of B1 receptor, the B2 receptor is overexpressed and can take over the function of its B1 counterpart, rendering uncertain the role of each kinin receptor in these metabolic effects. Therefore, we investigated the impact of ablation of each kinin receptor on energy metabolism using double kinin receptor knockout (B1B2KO) mice. Our data show that B1B2KO mice were resistant to HFD-induced obesity, with lower food intake and feed efficiency when compared with wild-type mice. They also had lower blood insulin and leptin levels and higher glucose tolerance after treatment with an HFD. Gene expression for tumor necrosis factor-alpha and C-reactive protein, which are important genes for insulin resistance, was reduced in white adipose tissue, skeletal muscle, and the liver in B1B2KO mice after the HFD. In summary, our data show that disruption of kinin B1 and B2 receptors has a profound impact on metabolic homeostasis in mice, by improving glucose tolerance and preventing HFD-induced obesity. These novel findings could pave the way for development of new pharmacological strategies to treat metabolic disorders such as insulin resistance and obesity.

11.
Diabetes ; 63(2): 688-700, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186867

RESUMO

Maternal obesity and gestational diabetes mellitus (GDM) are associated with obesity and diabetes risk in offspring. We tested whether maternal insulin resistance, which frequently coexists with GDM and obesity, could independently contribute to dysregulation of offspring metabolism. Female mice haploinsufficient for insulin receptor substrate-1 (IRS1-het) are hyperinsulinemic and insulin resistant during pregnancy, despite normal plasma glucose and body weight, and thus serve as a model of isolated maternal insulin resistance. Wild-type (WT) offspring of IRS1-het dams insulin resistance-exposed [IR-exposed] were compared with WT offspring of WT dams. Despite no differences in adiposity, male IR-exposed pups were glucose intolerant (P = 0.04) and hyperinsulinemic (1.3-fold increase, P = 0.02) by 1 month of age and developed progressive fasting hyperglycemia. Moreover, male IR-exposed pups challenged with high-fat diet exhibited insulin resistance. Liver lipidomic analysis of 3-week-old IR-exposed males revealed increases in the 16:1n7 fraction of several lipid classes, suggesting increased Scd1 activity. By 6 months of age, IR-exposed males had increased lipid accumulation in liver as well as increased plasma refed fatty acids, consistent with disrupted lipid metabolism. Our results indicate that isolated maternal insulin resistance, even in the absence of hyperglycemia or obesity, can promote metabolic perturbations in male offspring.


Assuntos
Dislipidemias/etiologia , Intolerância à Glucose/etiologia , Hiperinsulinismo/etiologia , Resistência à Insulina/fisiologia , Envelhecimento , Animais , Glicemia , Peso Corporal , Feminino , Regulação da Expressão Gênica , Haplótipos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Gravidez , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal
12.
Biol Chem ; 394(7): 901-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23585179

RESUMO

A role for the kinin B1 receptor in energy-homeostatic processes was implicated in previous studies; notably, the studies where kinin B1 receptor knockout mice (B1-/-) were shown to have impaired adiposity, impaired leptin and insulin production, lower feed efficiency, protection from liver steatosis and diet-induced obesity when fed a high fat diet (HFD). In particular, in a model where the B1 receptor is expressed exclusively in the adipose tissue, it rescues the plasma insulin concentration and the weight gain seen in wild type mice. Taking into consideration that leptin participates in the formation of hypothalamic nuclei, which modulate energy expenditure, and feeding behavior, we hypothesized that these brain regions could also be altered in B1-/- mice. We observed for the first time a difference in the gene expression pattern of cocaine and amphetamine related transcript (CART) in the (lateral hypothalamic area (LHA) resulting from the deletion of the kinin B1 receptor gene. The correlation between CART expression in the LHA and the thwarting of diet-induced obesity corroborates independent correlations between CART and obesity. Furthermore, it seems to indicate that the mechanism underlying the 'lean' phenotype of B1-/- mice does not stem solely from changes in peripheral tissues but may also receive contributions from changes in the hypothalamic machinery involved in energy homeostasis processes.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Cininas/deficiência , Proteínas do Tecido Nervoso/biossíntese , Obesidade/genética , Obesidade/metabolismo , Animais , Peso Corporal/fisiologia , Ingestão de Energia/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Cininas/genética , Cininas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
13.
Curr Cardiovasc Risk Rep ; 7(1): 46-59, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23459395

RESUMO

We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu remains a scientific challenge but we are one step closer.

14.
J Clin Periodontol ; 40(7): 653-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23534940

RESUMO

AIM: The pathophysiology of periodontal diseases involves aspects of immunity and bone remodelling. Considering the role of the kinin B1 receptor (Bdkrb1) in inflammation and healing, the purpose of this study was to evaluate the contribution of Bdkrb1 to the pathogenesis of periodontitis. MATERIAL AND METHODS: We used a model of ligature-induced experimental periodontitis (LIEP) in mice lacking Bdkrb1 (Bdkrb1(-/-) ) to test the role of this receptor in bone loss and cytokine secretion by lymph nodes cells. Angiotensin-converting enzyme inhibitor (ACEi) was used as a pharmacological strategy to support the genetic model. Also, autonomous effect of Bdkrb1 deletion was evaluated in osteoclasts precursors from bone marrow. RESULTS: Bdkrb1(-/-) mice exhibit increased bone loss and IL-17 secretion in response to LIEP when compared to wild type. LIEP does not modify TNF-α, IFN-γ and IL-10 levels in Bdkrb1(-/-) mice after 21 days. Bone marrow cells from Bdkrb1(-/-) displayed increased differentiation into functional osteoclasts with consistent artificial calcium phosphate degradation. Furthermore, treatment of mice with ACEi prevented bone destruction. CONCLUSION: Bdkrb1 participates in the pathogenesis of LIEP bone loss possibly through mechanisms that involve modulation of the TH 17 response, thereby demonstrating its role in the development of periodontitis.


Assuntos
Perda do Osso Alveolar/patologia , Osteoclastos/patologia , Periodontite/etiologia , Receptor B1 da Bradicinina/fisiologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/prevenção & controle , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Células da Medula Óssea/patologia , Fosfatos de Cálcio/metabolismo , Contagem de Células , Diferenciação Celular/fisiologia , Forma Celular , Células Cultivadas , Enalapril/uso terapêutico , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodontite/patologia , Ratos , Ratos Wistar , Receptor B1 da Bradicinina/genética , Linfócitos T/fisiologia , Células Th17/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
15.
J Mol Med (Berl) ; 91(7): 851-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23385644

RESUMO

Kinins B1 and B2 receptors (B1R and B2R) are classically associated with inflammation, but our group has recently demonstrated new roles for B1R in metabolism using a knockout model (B1 (-/-)). B1 (-/-) mice display improvement on leptin and insulin sensitivity and is protected from high fat diet (HFD)-induced obesity. Here, we evaluate the hepatic effects of the B1R ablation and its role on hepatic function. Despite no expression of hepatic B1R, HFD-induced hepatic lipid accumulation was lower than in control animals. B1 (-/-) mice also presented lower hepatic lipogenesis and SCD1 protein content in the liver. When stimulated with exogenous leptin, B1 (-/-) mice exhibited increased hepatic pJAK2. Similarly, leptin signaling was enhanced in the liver of ob/ob-B1 (-/-) mice, as demonstrated by increased levels of pSTAT3 compared to ob/ob. Plasma concentrations of intercellular adhesion molecule 1, fetuin A, leukemia inhibitory factor, tissue inhibitor of metalloprotease-1, resistin, and oncostatin M were reduced in B1 (-/-). Finally, B1 (-/-) mice have increased gene expression of hepatic B2 receptor, but no difference in leptin receptor expression. Our results show that B1 (-/-) mice are protected from non-alcoholic fatty liver disease (NAFLD) after HFD treatment. Since B1R expression was not observed in the liver after HFD, we propose that the cross talk between the adipose tissue and the liver, mainly through leptin, is an important factor contributing to the observed results. Besides that, several other inflammatory mediators already correlated with NAFLD or liver function were found to be altered in our model. Taken together, our data suggest that B1R plays an important role in hepatic steatosis development.


Assuntos
Fígado Gorduroso/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Receptor B1 da Bradicinina/deficiência , Adipocinas/sangue , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Receptores para Leptina/metabolismo , Estearoil-CoA Dessaturase/metabolismo
16.
PLoS One ; 7(9): e44782, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024762

RESUMO

BACKGROUND: Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B(1) receptor knockout mice (B(1) (-/-)) are leaner and exhibit improved insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that kinin B(1) receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B(1) receptors. In these cells, treatment with the B(1) receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B(1) (-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B(1) receptor was limited to cells of the adipose tissue (aP2-B(1)/B(1) (-/-)). Similarly to B(1) (-/-) mice, aP2-B(1)/B(1) (-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B(1) receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B(1) (-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B(1) receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B(1)/B(1) (-/-) when compared to B(1) (-/-) mice. When subjected to high fat diet, aP2-B(1)/B(1) (-/-) mice gained more weight than B(1) (-/-) littermates, becoming as obese as the wild types. CONCLUSIONS/SIGNIFICANCE: Thus, kinin B(1) receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Cininas/metabolismo , Obesidade/metabolismo , Receptor B1 da Bradicinina/metabolismo , Animais , Regulação da Expressão Gênica , Predisposição Genética para Doença , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Receptor B1 da Bradicinina/genética
17.
J Mol Med (Berl) ; 87(10): 953-63, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19618151

RESUMO

Kinin B1 receptor is involved in chronic inflammation and expressed in human atherosclerotic lesions. However, its significance for lesion development is unknown. Therefore, we investigated the effect of kinin B1 receptor deletion on the development of atherosclerosis and aortic aneurysms in apolipoprotein E-deficient (ApoE(-/-)) mice. Mice deficient both in ApoE and in kinin B1 receptor (ApoE(-/-)-B(1)(-/-)) were generated and analyzed for their susceptibility to atherosclerosis and aneurysm development under cholesterol rich-diet (western diet) and angiotensin II infusion. Kinin B1 receptor messenger RNA (mRNA) expression was significantly increased in ApoE(-/-) mice after Western-type diet. Although no difference in serum cholesterol was found between ApoE(-/-)-B(1)(-/-) and ApoE(-/-) mice under Western-type diet, aortic lesion incidence was significantly higher in ApoE(-/-)-B(1)(-/-) after this treatment. In accordance, we observed increased endothelial dysfunction in these mice. The mRNA expression of cyclic guanosine monophosphate-dependent protein kinase I, CD-11, F4/80, macrophage colony-stimulating factor, and tumor necrosis factor-alpha were increased in the aorta of double-deficient mice following Western-type diet, whereas the levels of peroxisome proliferator-activated receptor gamma protein and the activity of matrix metalloproteinase-9 activity were decreased. In addition to the increased atherosclerotic lesions, the lack of kinin B(1) receptor also increased the incidence of abdominal aortic aneurysms after angiotensin II infusion. In conclusion, our results show that kinin B(1) receptor deficiency aggravates atherosclerosis and aortic aneurysms under cholesterolemic conditions, supporting an antiatherogenic role for the kinin B(1) receptor.


Assuntos
Aneurisma Aórtico/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Receptor B1 da Bradicinina/metabolismo , Angiotensina II/administração & dosagem , Angiotensina II/metabolismo , Animais , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Apolipoproteínas E/genética , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Colesterol/sangue , Dieta , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor B1 da Bradicinina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA