Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480151

RESUMO

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

2.
Genome Med ; 15(1): 20, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013636

RESUMO

BACKGROUND: Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS: We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS: A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS: Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.


Assuntos
Antígeno B7-H1 , Neoplasias , Adulto , Humanos , Criança , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias/genética , Linfócitos T CD8-Positivos/metabolismo , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Mutação
3.
Front Pharmacol ; 13: 1042989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438828

RESUMO

Background: Despite (neo) adjuvant chemotherapy with cisplatin, doxorubicin and methotrexate, some patients with primary osteosarcoma progress during first-line systemic treatment and have a poor prognosis. In this study, we investigated whether patients with early disease progression (EDP), are characterized by a distinctive pharmacogenetic profile. Methods and Findings: Germline DNA from 287 Dutch high-grade osteosarcoma patients was genotyped using the DMET Plus array (containing 1,936 genetic markers in 231 drug metabolism and transporter genes). Associations between genetic variants and EDP were assessed using logistic regression models and associated variants (p <0.05) were validated in independent cohorts of 146 (Spain and United Kingdom) and 28 patients (Australia). In the association analyses, EDP was significantly associated with an SLC7A8 locus and was independently validated (meta-analysis validation cohorts: OR 0.19 [0.06-0.55], p = 0.002). The functional relevance of the top hits was explored by immunohistochemistry staining and an in vitro transport models. SLC7A8 encodes for the L-type amino acid transporter 2 (LAT2). Transport assays in HEK293 cells overexpressing LAT2 showed that doxorubicin, but not cisplatin and methotrexate, is a substrate for LAT2 (p < 0.0001). Finally, SLC7A8 mRNA expression analysis and LAT2 immunohistochemistry of osteosarcoma tissue showed that the lack of LAT2 expression is a prognostic factor of poor prognosis and reduced overall survival in patients without metastases (p = 0.0099 and p = 0.14, resp.). Conclusion: This study identified a novel locus in SLC7A8 to be associated with EDP in osteosarcoma. Functional studies indicate LAT2-mediates uptake of doxorubicin, which could give new opportunities to personalize treatment of osteosarcoma patients.

4.
Genes Chromosomes Cancer ; 61(2): 81-93, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687117

RESUMO

Identification of cancer-predisposing germline variants in childhood cancer patients is important for therapeutic decisions, disease surveillance and risk assessment for patients, and potentially, also for family members. We investigated the spectrum and prevalence of pathogenic germline variants in selected childhood cancer patients with features suggestive of genetic predisposition to cancer. Germline DNA was subjected to exome sequencing to filter variants in 1048 genes of interest including 176 known cancer predisposition genes (CPGs). An enrichment burden analysis compared rare deleterious germline CPG variants in the patient cohort with those in a healthy aged control population. A subset of predicted deleterious variants in novel candidate CPGs was investigated further by examining matched tumor samples, and the functional impact of AXIN1 variants was analyzed in cultured cells. Twenty-two pathogenic/likely pathogenic (P/LP) germline variants detected in 13 CPGs were identified in 19 of 76 patients (25.0%). Unclear association with the diagnosed cancer types was observed in 11 of 19 patients carrying P/LP CPG variants. The burden of rare deleterious germline variants in autosomal dominant CPGs was significantly higher in study patients versus healthy aged controls. A novel AXIN1 frameshift variant (Ser321fs) may impact the regulation of ß-catenin levels. Selection of childhood cancer patients for germline testing based on features suggestive of an underlying genetic predisposition could help to identify carriers of clinically relevant germline CPG variants, and streamline the integration of germline genomic testing in the pediatric oncology clinic.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Neoplasias , Adolescente , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Lactente , Recém-Nascido , Neoplasias/epidemiologia , Neoplasias/genética , Sequenciamento do Exoma
5.
EMBO Mol Med ; 14(4): e14608, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927798

RESUMO

Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Criança , Modelos Animais de Doenças , Genômica/métodos , Humanos , Neoplasias/patologia , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34282791

RESUMO

BACKGROUND: MYCN amplification (MNA), segmental chromosomal aberrations (SCA) and ALK activating mutations are biomarkers for risk-group stratification and for targeted therapeutics for neuroblastoma, both of which are currently assessed on tissue biopsy. Increase in demand for tumor genetic testing for neuroblastoma diagnosis is posing a challenge to current practice, as the small size of the core needle biopsies obtained are required for multiple molecular tests. We evaluated the utility of detecting these biomarkers in the circulation. METHODS: Various pre-analytical conditions tested to optimize circulating-tumor DNA (ctDNA) copy number changes evaluations. Plasma samples from 10 patients diagnosed with neuroblastoma assessed for SCA and MNA using single nucleotide polymorphism (SNP) array approach currently used for neuroblastoma diagnosis, with MNA status assessed independently using digital-droplet PCR (ddPCR). Three patients (one in common with the previous 10) tested for ALK activating mutations p.F1174L and p.F1245I using ddPCR. RESULTS: Copy number detection is highly affected by physical perturbations of the blood sample (mimicking suboptimal sample shipment), which could be overcome using specialized preservative collection tubes. Pre-analytical DNA repair procedures on ctDNA before SNP chromosome microarray processing improved the lower limit of detection for SCA and MNA, defined as 20% and 10%, respectively. We detected SCA in 10/10 (100%) patients using SNP array, 7 of which also presented MNA. Circulating-free DNA (cfDNA) and matched tumor DNA profiles were generally identical. MNA was detected using ddPCR in 7/7 (100%) of MNA and 0/12 (0%) non-MNA cases. MNA and ALK mutation dynamic change was assessed in longitudinal samples from 4 and 3 patients (one patient with both), respectively, accurately reflected response to treatment in 6/6 (100%) and disease recurrence in 5/6 (83%) of cases. Samples taken prior to targeted treatment with the ALK inhibitor Lorlatinib and 6-8 weeks on treatment showed reduction/increase in ALK variants according to response to treatment. CONCLUSIONS: These results demonstrate the feasibility of ctDNA profiling for molecular risk-stratification, and treatment monitoring in a clinically relevant time frame and the potential to reduce fresh tissue requirements currently embedded in the management of neuroblastoma.

7.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209825

RESUMO

Functional nanocarriers which are able to simultaneously vectorize drugs to the site of interest and exert their own cytotoxic activity represent a significant breakthrough in the search for effective anticancer strategies with fewer side effects than conventional chemotherapeutics. Here, we propose previously developed, self-assembling dextran-curcumin nanoparticles for the treatment of prostate cancer in combination therapy with Doxorubicin (DOXO). Biological effectiveness was investigated by evaluating the cell viability in either cancer and normal cells, reactive oxygen species (ROS) production, apoptotic effect, interference with the cell cycle, and the ability to inhibit cell migration and reverse the epithelial to mesenchymal transition (EMT). The results proved a significant enhancement of curcumin efficiency upon immobilization in nanoparticles: IC50 reduced by a half, induction of apoptotic effect, and improved ROS production (from 67 to 134%) at low concentrations. Nanoparticles guaranteed a pH-dependent DOXO release, with a more efficient release in acidic environments. Finally, a synergistic effect between nanoparticles and Doxorubicin was demonstrated, with the free curcumin showing additive activity. Although in vivo studies are required to support the findings of this study, these preliminary in vitro data can be considered a proof of principle for the design of an effective therapy for prostate cancer treatment.


Assuntos
Curcumina/farmacologia , Dextranos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias da Próstata/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Curcumina/administração & dosagem , Dextranos/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Nanopartículas , Células PC-3
8.
ChemMedChem ; 16(15): 2315-2329, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890721

RESUMO

Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/química , Complexos de Coordenação/química , Cobre/química , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Humanos , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
9.
Cancer Gene Ther ; 28(3-4): 321-334, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32873870

RESUMO

Chimeric Antigen Receptor (CAR) T-cell therapy, as an approved treatment option for patients with B cell malignancies, demonstrates that genetic modification of autologous immune cells is an effective anti-cancer regimen. Erythropoietin-producing Hepatocellular receptor tyrosine kinase class A2 (EphA2) is a tumour associated antigen expressed on a range of sarcomas, including paediatric osteosarcoma (OS) and Ewing sarcoma (ES). We tested human EphA2 directed CAR T cells for their capacity to target and kill human OS and ES tumour cells using in vitro and in vivo assays, demonstrating that EphA2 CAR T cells have potent anti-tumour efficacy in vitro and can eliminate established OS and ES tumours in vivo in a dose and delivery route dependent manner. Next, in an aggressive metastatic OS model we demonstrated that systemically infused EphA2 CAR T cells can traffic to and eradicate tumour deposits in murine livers and lungs. These results support further pre-clinical evaluation of EphA2 CAR T cells to inform the design of early phase clinical trial protocols to test the feasibility and safety of this immune cell therapy in paediatric bone sarcoma patients.


Assuntos
Neoplasias Ósseas/terapia , Imunoterapia Adotiva/métodos , Receptor EphA2/imunologia , Linfócitos T/imunologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular
10.
Pharmaceutics ; 12(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291284

RESUMO

Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.

11.
Pediatr Blood Cancer ; 67(11): e28594, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881242

RESUMO

Driver mutations in the CTNNB1 gene (encoding ß-catenin) are a hallmark of sporadic hepatoblastoma (HBL). Our results show that CTNNB1 circulating tumour DNA (ctDNA) is readily detected in patients diagnosed with localised HBL, with serial sampling along the course of therapy and follow up providing a sensitive mechanism to monitor tumour dynamics and response to treatment. This exciting potential for CTNNB1 ctDNA to serve as a biomarker for treatment response in HBL holds clinical value, and requires assessment in a larger cohort of mixed tumour stages and recurrent disease.


Assuntos
Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA de Neoplasias/genética , Hepatoblastoma/diagnóstico , Neoplasias Hepáticas/diagnóstico , Mutação , beta Catenina/genética , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , DNA de Neoplasias/sangue , Seguimentos , Hepatoblastoma/sangue , Hepatoblastoma/genética , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Prognóstico , Estudos Prospectivos , beta Catenina/sangue
12.
Cancer Res ; 80(19): 4129-4144, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816860

RESUMO

Therapeutic checkpoint antibodies blocking programmed death receptor 1/programmed death ligand 1 (PD-L1) signaling have radically improved clinical outcomes in cancer. However, the regulation of PD-L1 expression on tumor cells is still poorly understood. Here we show that intratumoral copper levels influence PD-L1 expression in cancer cells. Deep analysis of the The Cancer Genome Atlas database and tissue microarrays showed strong correlation between the major copper influx transporter copper transporter 1 (CTR-1) and PD-L1 expression across many cancers but not in corresponding normal tissues. Copper supplementation enhanced PD-L1 expression at mRNA and protein levels in cancer cells and RNA sequencing revealed that copper regulates key signaling pathways mediating PD-L1-driven cancer immune evasion. Conversely, copper chelators inhibited phosphorylation of STAT3 and EGFR and promoted ubiquitin-mediated degradation of PD-L1. Copper-chelating drugs also significantly increased the number of tumor-infiltrating CD8+ T and natural killer cells, slowed tumor growth, and improved mouse survival. Overall, this study reveals an important role for copper in regulating PD-L1 and suggests that anticancer immunotherapy might be enhanced by pharmacologically reducing intratumor copper levels. SIGNIFICANCE: These findings characterize the role of copper in modulating PD-L1 expression and contributing to cancer immune evasion, highlighting the potential for repurposing copper chelators as enhancers of antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4129/F1.large.jpg.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/imunologia , Cobre/metabolismo , Neuroblastoma/imunologia , Evasão Tumoral/fisiologia , Animais , Antígeno B7-H1/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Quelantes/farmacologia , Transportador de Cobre 1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Linfócitos do Interstício Tumoral/patologia , Camundongos Endogâmicos BALB C , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Trietilenofosforamida/farmacologia , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365886

RESUMO

Carbon nanostructures (CN) are emerging valuable materials for the assembly of highly engineered multifunctional nanovehicles for cancer therapy, in particular for counteracting the insurgence of multi-drug resistance (MDR). In this regard, carbon nanotubes (CNT), graphene oxide (GO), and fullerenes (F) have been proposed as promising materials due to their superior physical, chemical, and biological features. The possibility to easily modify their surface, conferring tailored properties, allows different CN derivatives to be synthesized. Although many studies have explored this topic, a comprehensive review evaluating the beneficial use of functionalized CNT vs G or F is still missing. Within this paper, the most relevant examples of CN-based nanosystems proposed for MDR reversal are reviewed, taking into consideration the functionalization routes, as well as the biological mechanisms involved and the possible toxicity concerns. The main aim is to understand which functional CN represents the most promising strategy to be further investigated for overcoming MDR in cancer.


Assuntos
Antineoplásicos/química , Carbono/química , Resistencia a Medicamentos Antineoplásicos , Nanoestruturas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
14.
Theranostics ; 8(20): 5645-5659, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555570

RESUMO

Given the strong clinical evidence that copper levels are significantly elevated in a wide spectrum of tumors, copper homeostasis is considered as an emerging target for anticancer drug design. Monitoring copper levels in vivo is therefore of paramount importance when assessing the efficacy of copper-targeting drugs. Herein, we investigated the activity of the copper-targeting compound Dextran-Catechin by developing a [64Cu]CuCl2 PET imaging protocol to monitor its effect on copper homeostasis in tumors. Methods: Protein expression of copper transporter 1 (CTR1) in tissue microarrays representing 90 neuroblastoma patient tumors was assessed by immunohistochemistry. Western blotting analysis was used to study the effect of Dextran-Catechin on the expression of CTR1 in neuroblastoma cell lines and in tumors. A preclinical human neuroblastoma xenograft model was used to study anticancer activity of Dextran-Catechin in vivo and its effect on tumor copper homeostasis. PET imaging with [64Cu]CuCl2 was performed in such preclinical neuroblastoma model to monitor alteration of copper levels in tumors during treatment. Results: CTR1 protein was found to be highly expressed in patient neuroblastoma tumors by immunohistochemistry. Treatment of neuroblastoma cell lines with Dextran-Catechin resulted in decreased levels of glutathione and in downregulation of CTR1 expression, which caused a significant decrease of intracellular copper. No changes in CTR1 expression was observed in normal human astrocytes after Dextran-Catechin treatment. In vivo studies and PET imaging analysis using the neuroblastoma preclinical model revealed elevated [64Cu]CuCl2 retention in the tumor mass. Following treatment with Dextran-Catechin, there was a significant reduction in radioactive uptake, as well as reduced tumor growth. Ex vivo analysis of tumors collected from Dextran-Catechin treated mice confirmed the reduced levels of CTR1. Interestingly, copper levels in blood were not affected by treatment, demonstrating potential tumor specificity of Dextran-Catechin activity. Conclusion: Dextran-Catechin mediates its activity by lowering CTR1 and intracellular copper levels in tumors. This finding further reveals a potential therapeutic strategy for targeting copper-dependent cancers and presents a novel PET imaging method to assess patient response to copper-targeting anticancer treatments.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Animais , Catequina , Proteínas de Transporte de Cátions , Linhagem Celular Tumoral , Cobre , Transportador de Cobre 1 , Dextranos , Feminino , Homeostase , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular , Neuroblastoma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Análise Serial de Tecidos
15.
Cancer Biol Ther ; 19(12): 1078-1087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30299205

RESUMO

Pediatric high grade gliomas (HGG) are primary brain malignancies that result in significant morbidity and mortality. One of the challenges in their treatment is inter- and intra-tumoral heterogeneity. Precision medicine approaches have the potential to enhance diagnostic, prognostic and/or therapeutic information. In this case study we describe the molecular characterization of a pediatric HGG and the use of an integrated approach based on genomic, in vitro and in vivo testing to identify actionable targets and treatment options. Molecular analysis based on WGS performed on initial and recurrent tumor biopsies revealed mutations in TP53, TSC1 and CIC genes, focal amplification of MYCN, and copy number gains in SMO and c-MET. Transcriptomic analysis identified increased expression of MYCN, and genes involved in sonic hedgehog signaling proteins (SHH, SMO, GLI1, GLI2) and receptor tyrosine kinase pathways (PLK, AURKA, c-MET). HTS revealed no cytotoxic efficacy of SHH pathway inhibitors while sensitivity was observed to the mTOR inhibitor temsirolimus, the ALK inhibitor ceritinib, and the PLK1 inhibitor BI2536. Based on the integrated approach, temsirolimus, ceritinib, BI2536 and standard therapy temozolomide were selected for further in vivo evaluation. Using the PDX animal model (median survival 28 days) we showed significant in vivo activity for mTOR inhibition by temsirolimus and BI2536 (median survival 109 and 115.5 days respectively) while ceritinib and temozolomide had only a moderate effect (43 and 75.5 days median survival respectively). This case study demonstrates that an integrated approach based on genomic, in vitro and in vivo drug efficacy testing in a PDX model may be useful to guide the management of high risk pediatric brain tumor in a clinically meaningful timeframe.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Genômica , Ensaios de Triagem em Larga Escala , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Fatores Etários , Animais , Biópsia , Criança , Metilação de DNA , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genômica/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Neoplasias/diagnóstico , Neoplasias/mortalidade , Medicina de Precisão/métodos , Recidiva , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Eur J Cancer ; 83: 132-141, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28735070

RESUMO

The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Neuroblastoma/tratamento farmacológico , Animais , Western Blotting , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxiciclina/farmacologia , Xenoenxertos/efeitos dos fármacos , Irinotecano , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
JCO Precis Oncol ; 1: 1-12, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35172499

RESUMO

PURPOSE: Programmed death-ligand 1 (PD-L1) expression represents a potential predictive biomarker of immune checkpoint blockade response. However, literature about the prevalence of PD-L1 expression in the pediatric cancer setting is discordant. METHODS: PD-L1 expression was analyzed using immunohistochemistry in 500 pediatric tumors (including neuroblastoma, sarcomas, and brain cancers). Tumors with ≥ 1% cells showing PD-L1 membrane staining of any intensity were scored as positive. Positive cases were further characterized, with cases with weak intensity PD-L1 staining reported as having low PD-L1 expression and cases with a moderate or strong intensity of staining considered to have high PD-L1 expression. RESULTS: PD-L1-positive staining was identified in 13% of cases, whereas high PD-L1 expression was found in 3% of cases. Neuroblastoma (n = 254) showed PD-L1 expression of any intensity in 18.9% of cases and was associated with longer overall survival (P = .045). However, high PD-L1 expression in neuroblastoma (3.1%) was significantly associated with an increased risk of relapse (P = .002). Positive PD-L1 staining was observed more frequently in low- and intermediate-risk patients (P = .037) and in cases lacking MYCN amplification (P = .002). CONCLUSION: In summary, high PD-L1 expression in patients with neuroblastoma may represent an unfavorable prognostic factor associated with a higher risk of cancer relapse. This work proposes PD-L1 immunohistochemical assessment as a novel parameter for identifying patients with an increased likelihood of cancer recurrence.

19.
Sci Transl Med ; 7(312): 312ra176, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26537256

RESUMO

Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Neoplasias do Sistema Nervoso/tratamento farmacológico , Neoplasias do Sistema Nervoso/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Elongação da Transcrição/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Carbazóis/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo
20.
Transl Pediatr ; 4(2): 67-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26835363

RESUMO

The acquisition of de novo somatic mutations accounts for approximately 90% of all new cancer diagnoses, while the remaining 10% is due to inherited genetic traits. In this latter category, individuals harbouring germline mutations show a higher likelihood of developing potentially life-threatening cancers, often at a very young age. The study of cancer genetics has profoundly helped our understanding of cancer biology, leading to better characterised malignancies, tailored targeted therapies and the identification of individuals at high risk of cancer diagnosis. This review will discuss examples of cancer syndromes in children, adolescents and young adults, the main underlying gene mutations, and the use of genetic testing to identify gene mutation carriers. Finally, we will describe how gene mutation detection is employed for the life-long management of patients with high susceptibility to cancer, including genetic counselling, increased surveillance, early intervention and use of targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA