RESUMO
Addition of vitamins and antioxidants has been long associated with increased immunity and are commonly used in the poultry industry; however, less is known regarding their use in broiler breeder hens. The objective of this study was to determine if feeding a complex of protected biofactors and antioxidants composed of vitamins and fermentation extracts to broiler breeder hens conferred resistance against Salmonella enterica serovar Enteritidis (S. Enteritidis) in the progeny chicks. Three-day-old chicks from control- and supplement-fed hens were challenged with S. Enteritidis and necropsied 4- and 11-days postchallenge (dpc) to determine if there were differences in invasion and colonization. Serum and jejunum were evaluated for various cytokine and chemokine production. Fewer (P = 0.002) chicks from supplement-fed hens had detectable S. Enteritidis in the ceca (32.6%) compared to chicks from control-fed hens (64%). By 11 dpc, significantly (P < 0.001) fewer chicks from supplement-fed hens were positive for S. Enteritidis (liver [36%]; ceca [16%]) compared to chicks from the control hens (liver [76%]; ceca [76%]). The recoverable S. Enteritidis in the cecal content was also lower (P = 0.01) at 11 dpc. In additional to the differences in invasion and colonization, cytokine and chemokine production were distinct between the 2 groups of chicks. Chicks from supplement-fed hens had increased production of IL-16, IL-6, MIP-3α, and RANTES in the jejunum while IL-16 and MIP-1ß were higher in the serum of chicks from the control-fed hens. By 11 dpc, production of IFN-γ was decreased in the jejunum of chicks from supplement-fed hens. Collectively, these data demonstrate adding a protected complex of biofactors and antioxidants to the diet of broiler breeder hens offers a measure of transgenerational protection to the progeny against S. Enteritidis infection and reduces colonization that is mediated, in part, by a robust and distinct cytokine and chemokine response locally at the intestine and systemically in the blood.
Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Feminino , Salmonella enteritidis , Galinhas , Antioxidantes , Interleucina-16 , Dieta/veterinária , Vitaminas , Salmonelose Animal/prevenção & controle , Doenças das Aves Domésticas/prevenção & controleRESUMO
The use of radioactive isotopes to measure de novo lipogenesis in pigs has been well established. Different from radioactive isotopes, stable isotopes present little or no risk to human and animal subjects. Therefore, the objective of this study was to adapt the method of bolus injection of radioactive glucose (14C) to use 13C-labeled glucose to estimate de novo lipogenesis in finishing pigs. Five vein-catheterized gilts received 3.0 kg/d of a commercial diet for 2 wk. On the last day, the pigs received a bolus injection of [U-13C]glucose (12 mg/kg body weight). A serial of blood samples was taken for 4 h to determine the glucose rate of disappearance (Rd) from plasma glucose isotopic enrichment (IE). The 13C IE of lipids was determined from adipose tissue biopsies collected at 1, 2, and 3 h after the bolus injection and from adipose tissue collected after pig euthanasia 4 h after the bolus. Lipogenesis was estimated from the incorporation of 13C from glucose into adipose tissue lipids. Glucose Rd, estimated using a double-exponential function, averaged 5.4 ± 1.4 mmol/min. The IE of lipids increased linearly during the 4 h following the bolus injection (P < 0.05). The rate of incorporation of glucose into lipids, estimating lipogenesis, averaged 9.0 µg glucose/(min × g of lipids) 4 h after the bolus injection. In conclusion, the in vivo method using a bolus injection of [U-13C]glucose allows a successful estimation of de novo lipogenesis in finishing pigs.