Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Conserv Dent ; 26(3): 281-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398848

RESUMO

Background: Considering the potential of translucent zirconia for application in esthetic restorations, it is necessary to find effective methods with the least adverse effects to increase its bond strength to resin cement. Aims: This study aimed to test if different conservative surface treatments and cement types could affect the micro-shear bond strength (µSBS), failure mode, and bonding interface between resin cement and translucent zirconia. Materials and Methods: In this in vitro experimental study, translucent zirconia blocks were divided into four groups based on the surface treatment they received: no treatment, argon plasma, primer (Pr), and Pr + plasma. Each group was further divided into two subgroups based on the applied cement: PANAVIA F2 and Duo-Link cement. Fourteen cement columns with a diameter of 1 mm were placed on each block (n = 14); all the specimens were immersed in 37°C water for 24 h. Afterward, µSBS was evaluated (P < 0.05), and the mode of failure was determined by a stereomicroscope (×10). The cement-zirconia interface and the surface hydrophilicity (contact angle) were also evaluated. Statistical Analysis: Two-way analysis of variance (ANOVA) was used to evaluate the effect of surface preparation, cement types, and incubator, simultaneously (P < 0.05). The bond strengths after incubation were analyzed by one-way ANOVA (P < 0.05). Failure mode, contact angle, and cement-zirconia interface were analyzed descriptively. Results: The highest bond strength was seen in Pr surface treatment for Duo-Link cement; however, this group was not significantly different from Pr and PANAVIA F2 cement and Pr + plasma and Duo-Link cement (P = 0.075) groups. All plasma specimens in the incubator failed prematurely. The mode of failure in all specimens was adhesive. The lowest and highest contact angles were seen in Pr + plasma and the control groups, respectively. Conclusion: The use of Pr could successfully improve the bond strength of resin cement to translucent zirconia while plasma was not an acceptable and durable substitute.

2.
Int J Dent ; 2023: 6639030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223394

RESUMO

Background: Today, various methods are used to increase the bond strength of zirconia in layering ceramics. This study evaluated the effects of nonthermal argon plasma on zirconia shear bond strength to layering porcelain. Materials and Method. In this experimental study, 42 square blocks of zirconia were prepared and randomly divided into three groups (n = 14) according to the applying surface treatment: (1) the control group (without any surface treatment), (2) the plasma-treated group with argon nonthermal plasma, and (3) the air abrasion group with 50 µm Al2O3 particles. All samples were layered with porcelain. One sample from each group was evaluated by electron microscopy (SEM) to examine the cross-sectional area of the zirconia-ceramic bond. The rest of the specimens were subjected to thermocycling with 5,000 baths to imitate the aging process in the mouth and then were tested for shear bond strength. The failure pattern of the samples was examined by stereomicroscope. Bond strength data were analyzed by one-way ANOVA test in three groups and Tamhane post hoc test in pairs. The significance level of p-value was considered 0.05. Results: The shear bond strength of the plasma-treated group was significantly higher than the control group (p = 0.032) but the shear bond strength between the sandblast and the plasma-treated group was not significantly different (p = 0.656). The shear bond strength between the sandblast and the control group was also not significant (p = 0.202). Regarding the mode of failure, failures were mostly adhesive and then mixed. Examination of the samples under SEM showed that the bond area is the thickest in the sandblast group and also the surface roughness is the highest in the sandblast group and the lowest in the control group. Conclusion: This study demonstrated that the use of nonthermal argon plasma treatment is an effective way to enhance the quality and quantity of shear bond strength between layering porcelain and zirconia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA