Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plants (Basel) ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794380

RESUMO

The association between pre-harvest sprouting (PHS) and seed coat color has long been recognized. Red-grained wheats generally exhibit greater PHS resistance compared to white-grained wheat, although variability in PHS resistance exists within red-grained varieties. Here, we conducted a genome-wide association study on a panel consisting of red-grained wheat varieties, aimed at uncovering genes that modulate PHS resistance and red color components of seed coat using digital image processing. Twelve loci associated with PHS traits were identified, nine of which were described for the first time. Genetic loci marked by SNPs AX-95172164 (chromosome 1B) and AX-158544327 (chromosome 7D) explained approximately 25% of germination index variance, highlighting their value for breeding PHS-resistant varieties. The most promising candidate gene for PHS resistance was TraesCS6B02G147900, encoding a protein involved in aleurone layer morphogenesis. Twenty-six SNPs were significantly associated with grain color, independently of the known Tamyb10 gene. Most of them were related to multiple color characteristics. Prioritization of genes within the revealed loci identified TraesCS1D03G0758600 and TraesCS7B03G1296800, involved in the regulation of pigment biosynthesis and in controlling pigment accumulation. In conclusion, our study identifies new loci associated with grain color and germination index, providing insights into the genetic mechanisms underlying these traits.

2.
Plants (Basel) ; 12(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836230

RESUMO

Soybean is a leguminous plant cultivated in many countries and is considered important in the food industry due to the high levels of oil and protein content in the beans. The high demand for soybeans and its products in the industry requires the expansion of cultivation areas. Despite climatic restrictions, West Siberia is gradually expanding its area of soybean cultivation. In this study, we present the first analysis of the population structure and genetic diversity of the 175 soybean Glycine max breeding lines and varieties cultivated in West Siberia (103 accessions) and other regions of Russia (72 accessions), and we compare them with the cultivated soybean varieties from other geographical locations. Principal component analysis revealed several genetic clusters with different levels of genetic heterogeneity. Studied accessions are genetically similar to varieties from China, Japan, and the USA and are genetically distant to varieties from South Korea. Admixture analysis revealed four ancestry groups based on genetic ancestry and geographical origin, which are consistent with the regions of cultivation and origin of accessions and correspond to the principal component analysis result. Population statistics, including nucleotide diversity, Tajima's D, and linkage disequilibrium, are comparatively similar to those observed for studied accessions of a different origin. This study provides essential population and genetic information about the unique collection of breeding lines and varieties cultivated in West Siberia and other Russian regions to foster further evolutionary, genome-wide associations and functional breeding studies.

3.
PeerJ ; 11: e16109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842052

RESUMO

Background: Early maturity in spring bread wheat is highly desirable in the regions where it enables the plants to evade high temperatures and plant pathogens at the end of the growing season. Methods: To reveal the genetic loci responsible for the maturity time association analysis was carried out based on phenotyping for an 11-year period and high-throughput SNP genotyping of a panel of the varieties contrasting for this trait. The expression of candidate genes was verified using qPCR. The association between the SNP markers and the trait was validated using the biparental F2:3 population. Results: Our data showed that under long-day conditions, the period from seedling to maturity is mostly influenced by the time from heading to maturity, rather than the heading time. The QTLs associated with the trait were located on 2A, 3B, 4A, 5B, 7A and 7B chromosomes with the 7BL locus being the most significant and promising for its SNPs accelerated the maturity time by about 9 days. Gene dissection in this locus detected a number of candidates, the best being TraesCS7B02G391800 (bZIP9) and TraesCS7B02G412200 (photosystem II reaction center). The two genes are predominantly expressed in the flag leaf while flowering. The effect of the SNPs was verified in F2:3 population and confirmed the association of the 4A, 5B and 7BL loci with the maturity time.


Assuntos
Pão , Triticum , Mapeamento Cromossômico , Triticum/genética , Estações do Ano , Locos de Características Quantitativas/genética
4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686111

RESUMO

The content and quality of gluten in wheat grain is a distinctive characteristic that determines the final properties of wheat flour. In this study, a genome-wide association study (GWAS) was performed on a wheat panel consisting of bread wheat varieties and the introgression lines (ILs) obtained via hybridization with tetraploid wheat relatives. A total of 17 stable quantitative trait nucleotides (QTNs) located on chromosomes 1D, 2A, 2B, 3D, 5A, 6A, 7B, and 7D that explained up to 21% of the phenotypic variation were identified. Among them, the QTLs on chromosomes 2A and 7B were found to contain three and six linked SNP markers, respectively. Comparative analysis of wheat genotypes according to the composition of haplotypes for the three closely linked SNPs of chromosome 2A indicated that haplotype TT/AA/GG was characteristic of ten ILs containing introgressions from T. timopheevii. The gluten content in the plants with TT/AA/GG haplotype was significantly higher than in the varieties with haplotype GG/GG/AA. Having compared the newly obtained data with the previously reported quantitative trait loci (QTLs) we inferred that the locus on chromosome 2A inherited from T. timopheevii is potentially novel. The introgression lines containing the new locus can be used as sources of genetic factors to improve the quality traits of bread wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Farinha , Melhoramento Vegetal , Locos de Características Quantitativas , Glutens/genética
5.
Plants (Basel) ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687266

RESUMO

Wheat is a cereal grain that plays an important role in the world's food industry. The identification of the loci that change the concentration of elements in wheat seeds is an important challenge nowadays especially for genomic selection and breeding of novel varieties. In this study, we performed a multivariate genome-wide association study (GWAS) of the seven traits-concentrations of Zn, Mg, Mn, Ca, Cu, Fe, and K in grain-of the Russian collection of common wheat Triticum aestivum (N = 149 measured in two years in two different fields). We replicated one known locus associated with the concentration of Zn (IAAV1375). We identified four novel loci-BS00022069_51 (associated with concentrations of Ca and K), RFL_Contig6053_3082 (associated with concentrations of Fe and Mn), Kukri_rep_c70864_329 (associated with concentrations of all elements), and IAAV8416 (associated with concentrations of Fe and Mn)-three of them were located near the genes TraesCS6A02G375400, TraesCS7A02G094800, and TraesCS5B02G325400. Our result adds novel information on the loci involved in wheat grain element contents and may be further used in genomic selection.

6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982787

RESUMO

Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Variações do Número de Cópias de DNA , Genoma de Planta , Genômica , Tetraploidia
7.
Plant Dis ; 107(2): 493-499, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36265157

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, which used to be a harmful disease of winter wheat in the southern part of Russia, has been largely affecting the yield of spring bread wheat in the territories of the temperate climate zone since 2009. In total, 222 P. graminis f. sp. tritici isolates were obtained from samples of susceptible cultivars of spring bread wheat in Central and Volga regions and Omsk and Novosibirsk provinces in 2019. Genotyping of the isolates was carried out at 16 simple-sequence repeat (SSR) loci. Number of alleles, proportion of heterozygotes, and deviation from Hardy-Weinberg equilibrium were determined at each SSR locus. Based on genetic variability of SSR genotypes, it was shown that the P. graminis f. sp. tritici population is subdivided into two large clusters in the territory of the Russian temperate climate zone: the "European" population (the Central region) and the "Asian" one (the Volga region and two main wheat provinces of Western Siberia). Both of the P. graminis f. sp. tritici populations are characterized by a mixed mode of reproduction (sexual and clonal) but different sources of inoculum seem to shape a genotype structure within them. A group of P. graminis f. sp. tritici genotypes with high variability, the inbreeding coefficient closed to zero, and low observed heterozygosity was revealed among samples from Omsk. Moreover, two singular SSR genotypes identified among the Asian samples of P. graminis f. sp. tritici isolates should attract special attention in the monitoring of stem rust in order to disclose unexpected rapid changes of the pathogen in the corresponding regions and to prevent disease outbreak.


Assuntos
Basidiomycota , Pão , Doenças das Plantas , Basidiomycota/genética , Genótipo , Federação Russa
8.
Plant Mol Biol ; 109(1-2): 135-146, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316425

RESUMO

KEY MESSAGE: Our findings suggest most wheat biological processes are under the control of the daily expressed genes. Plant circadian rhythms represent daily changes in the activity of various processes, which are based on changes in the levels of gene expression and protein synthesis. In wheat, some key components of plant circadian clock have been identified, but there is little data on the daily expression and interactions of these genes. To study the common wheat daily transcriptome, RNA sequencing was performed. Using these data, genes expressed in daily pattern and the metabolic pathways controlled by them were identified: responses to stimuli and nutrients, transport, photoperiodism, photomorphogenesis, synthesis and degradation of different metabolites, and regulation of the processes of RNA synthesis. It was shown that a significant part of the transcriptome can vary greatly daily. Five expression patterns were identified. They were characterized by peaks at different time points and described the genes underlying these patterns. The analysis of the enrichment of gene ontology terms with various patterns allowed us to describe the main metabolic pathways in each group. Wheat homologs of the genes related to circadian clock in Arabidopsis were identified. Most of them were represented by three homoeologous genes expressed uniformly. Comparison of their expression patterns demonstrated a shift in the expression peaks for some core and accessory genes; the majority of wheat circadian genes were expressed in accordance with Arabidopsis homologs. This may indicate a similar functional role of these genes in wheat.


Assuntos
Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Triticum/genética
9.
Plants (Basel) ; 11(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161418

RESUMO

Most modern breeding programs aim to develop wheat (T. aestivum L.) varieties with a high grain protein content (GPC) due to its greater milling and cooking quality, and improved grain price. Here, we used a genome-wide association study (GWAS) to map single nucleotide polymorphisms (SNPs) associated with GPC in 93 spring bread wheat varieties developed by eight Russian Breeding Centers. The varieties were evaluated for GPC, grain weight per spike (GWS), and thousand-kernel weight (TKW) at six environments, and genotyped with 9351 polymorphic SNPs and two SNPs associated with the NAM-A1 gene. GPC varied from 9.8 to 20.0%, depending on the genotype and environment. Nearly 52% of the genotypes had a GPC > 14.5%, which is the threshold value for entry into high-class wheat varieties. Broad-sense heritability for GPC was moderate (0.42), which is due to the significant effect of environment and genotype × environment interactions. GWAS performed on mean GPC evaluated across six environments identified eleven significant marker-trait associations, of which nine were physically mapped on chromosome 6A. Screening of wheat varieties for allelic variants of the NAM-A1 gene indicated that 60% of the varieties contained the NAM-A1c allele, followed by 33% for NAM-A1d, and 5% for NAM-A1a alleles. Varieties with the NAM-A1d allele showed significantly (p < 0.01) smaller GPC than those with NAM-A1c and NAM-A1a. However, no significant differences between NAM-A1 alleles were observed for both GWS and TKW.

10.
Plants (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834646

RESUMO

The presence of awns on the ear is associated with a number of important plant properties, such as drought resistance, quality of the grain mass during processing, etc. The main manifestations of this trait are controlled by the B1 gene, which has recently been identified and encodes the C2H2 zinc finger transcription factor. Based on the previously identified SNPs in the promoter region of this gene, we constructed markers for dominant and recessive alleles which determine awnless and awned phenotypes, respectively. The markers were successful for use in targeting the respective alleles of the B1 gene in 176 varieties of common wheat, accessions of T. spelta L., as well as on F2/F3 hybrids from crosses between awned and awnless forms of T. aestivum. We first identified a new allele, b1mite, which has both an insert of a miniature Stowaway-like transposon, 261 bp in length, and 33 novel SNPs in the promoter region. Despite these changes, this allele had no effect on the awned phenotype. The possible mechanisms of the influence of the analyzed gene on phenotype are discussed.

11.
Plants (Basel) ; 11(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009062

RESUMO

Vaviloid spike branching, also called sham ramification, is a typical trait of Triticum vavilovii Jakubz. and is characterized by a lengthening of the spikelet axis. In this article, we present the results of a study of three triticale-wheat hybrid lines with differences in terms of the manifestation of the vaviloid spike branching. Lines were obtained by crossing triticale with hexaploid wheat, T. aestivum var. velutinum. The parental triticale is a hybrid of synthetic wheat (T. durum × Ae. tauschii var. meyrei) with rye, S. cereale ssp. segetale. Line 857 has a karyotype corresponding to hexaploid wheat and has a spike morphology closest to normal, whereas Lines 808/1 and 844/4 are characterized by the greatest manifestation of vaviloid spike branching. In Lines 808/1 and 844/4, we found the substitution 2RL(2DL). The karyotypes of the latter lines differ in that a pair of telocentric chromosomes 2DS is detected in Line 808/1, and these telocentrics are fused into one unpaired chromosome in Line 844/4. Using molecular genetic analysis, we found a deletion of the wheat domestication gene Q located on 5AL in the three studied hybrid lines. The deletion is local since an analysis of the adjacent gene B1 showed the presence of this gene. We assume that the manifestation of vaviloid spike branching in two lines (808/1 and 844/4) is associated with a disturbance in the joint action of genes Q and AP2L2-2D, which is another important gene that determines spike morphology and is located on 2DL.

12.
BMC Plant Biol ; 20(Suppl 1): 135, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050873

RESUMO

BACKGROUND: Leaf rust (Puccinia triticina Eriks.) is one of the most dangerous diseases of common wheat worldwide. Three approaches: genome-wide association study (GWAS), marker-assisted selection (MAS) and phytopathological evaluation in field, were used for assessment of the genetic diversity of Russian spring wheat varieties on leaf rust resistance loci and for identification of associated molecular markers. RESULTS: The collection, consisting of 100 Russian varieties of spring wheat, was evaluated over three seasons for resistance to the native population of leaf rust specific to the West Siberian region of Russia. The results indicated that most cultivars showed high susceptibility to P. triticina, with severity ratings (SR) of 60S-90S, however some cultivars showed a high level of leaf rust resistance (SR < 20MR-R). Based on the results of genome-wide association studies (GWAS) performed using the wheat 15 K genotyping array, 20 SNPs located on chromosomes 6D, 6A, 6B, 5A, 1B, 2A, 2B and 7A were revealed to be associated with leaf rust resistance. Genotyping with markers developed for known leaf rust resistance genes showed that most of the varieties contain genes Lr1, Lr3a, Lr9, Lr10, Lr17a, Lr20, Lr26 and Lr34, which are not currently effective against the pathogen. In the genome of three wheat varieties, gene Lr6Ai = 2 inherited from Th. intermedium was detected, which provides complete protection against the rust pathogen. It has been suggested that the QTL mapped to the chromosome 5AS of wheat cultivar Tulaikovskaya-zolotistaya, Tulaikovskaya-10, Samsar, and Volgouralskaya may be a new, previously undescribed locus conferring resistance to leaf rust. Obtained results also indicate that chromosome 1BL of the varieties Sonata, Otrada-Sibiri, Tertsiya, Omskaya-23, Tulaikovskaya-1, Obskaya-14, and Sirena may contain an unknown locus that provides a resistance response to local population. CONCLUSIONS: This study provides new insights into the genetic basis of resistance to leaf rust in Russian spring wheat varieties. The SNPs significantly associated with leaf rust resistance can be used for the development and application of diagnostic markers in marker-assisted selection schemes.


Assuntos
Doenças das Plantas/genética , Puccinia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Federação Russa , Estações do Ano , Triticum/microbiologia
13.
BMC Plant Biol ; 20(Suppl 1): 304, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050878

RESUMO

BACKGROUND: Plant height is an important wheat trait that is regulated by multiple genes, among which Rht is of the utmost value. In wheat, Rht-B1p (=Rht17) is a mutant allele of the Rht gene that encodes for a DELLA-protein and results in the development of gibberellin-insensitive plants with a dwarfing phenotype. The pleiotropic effects of dwarfing genes on yield are highly dependent on both the genetic background and the environmental conditions. In Russia, the Central Non-Black Earth Region and Krasnodar Krai are two economically important regions that require differing management for sustainable wheat production for food, feed and industry. The purpose of our study was to compare the pleiotropic effects of Rht-B1p on the main valuable agronomic traits in the F3:4 families of the spring bread wheat Chris Mutant/Novosibirskaya 67 in the genetic background of Vrn-B1a/vrn-B1 (spring/winter phenotype) and Ppd-D1a/Ppd-D1b (insensitivity/sensitivity to photoperiod) alleles in a field experiment in Moscow and Krasnodar Krai. RESULTS: Plant height was reduced on average by 21 cm (28%) and 25 cm (30%), respectively; Ppd-D1a slightly strengthened the dwarfing effect in Moscow and mitigated it in Krasnodar Krai. Grain weight of the main spike was reduced by Rht-B1p in Moscow and to lesser extent in Krasnodar; Ppd-D1a and Vrn-B1a tended to partially compensate for this loss in Krasnodar Krai. Thousand grain weight was reduced on average by 5.3 g (16%) and 2.9 g (10%) in Moscow and Krasnodar Krai, respectively, but was partially compensated for by Ppd-D1a in Krasnodar Krai. Harvest index was increased due to Rht-B1p by 6 and 10% in Moscow and Krasnodar Krai, respectively. Rht-B1p resulted in a delay of heading by 1-2 days in Moscow. Ppd-D1a accelerated heading by 1 day and 6 days in Moscow and in Krasnodar Krai, respectively. CONCLUSIONS: Rht-B1p could be introduced into wheat breeding along with dwarfing genes such as Rht-B1b and Rht-D1b. Special attention should be paid to its combination with Ppd-D1a and Vrn-B1a as regulators of developmental rates, compensators of adverse effects of Rht-B1p on productivity and enhancers of positive effect of Rht-B1p on harvest index.


Assuntos
Genes de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Pleiotropia Genética , Fotoperíodo , Solo , Temperatura , Triticum/crescimento & desenvolvimento
14.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630293

RESUMO

Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is a dangerous disease of common wheat worldwide. Development and cultivation of the varieties with genetic resistance is one of the most effective and environmentally important ways for protection of wheat against fungal pathogens. Field phytopathological screening and genome-wide association study (GWAS) were used for assessment of the genetic diversity of a collection of spring wheat genotypes on stem rust resistance loci. The collection consisting of Russian varieties of spring wheat and introgression lines with alien genetic materials was evaluated over three seasons (2016, 2017 and 2018) for resistance to the native population of stem rust specific to the West Siberian region of Russia. The results indicate that most varieties displayed from moderate to high levels of susceptibility to P. graminis; 16% of genotypes had resistance or immune response. In total, 13,006 single-nucleotide polymorphism (SNP) markers obtained from the Infinium 15K array were used to perform genome-wide association analysis. GWAS detected 35 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1A, 2A, 2B, 3B, 5A, 5B, 6A, 7A and 7B. The most significant associations were found on chromosomes 7A and 6A where known resistance genes Sr25 and Sr6Ai = 2 originated from Thinopyrum ssp. are located. Common wheat lines containing introgressed fragments from Triticum timopheevii and Triticum kiharae were found to carry Sr36 gene on 2B chromosome. It has been suggested that the quantitative trait loci (QTL) mapped to the chromosome 5BL may be new loci inherited from the T. timopheevii. It can be inferred that a number of Russian wheat varieties may contain the Sr17 gene, which does not currently provide effective protection against pathogen. This is the first report describing the results of analysis of the genetic factors conferring resistance of Russian spring wheat varieties to stem rust.


Assuntos
Resistência à Doença/genética , Puccinia/patogenicidade , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Puccinia/genética , Locos de Características Quantitativas/genética , Federação Russa , Triticum/crescimento & desenvolvimento
16.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397492

RESUMO

Tetraploid species T. dicoccum Shuebl is a potential source of drought tolerance for cultivated wheat, including common wheat. This paper describes the genotyping of nine stable allolines isolated in the offspring from crossing of T. dicoccum x T. aestivum L. using 21 microsatellite (simple sequence repeats-SSR) markers and two cytoplasmic mitochondrial markers to orf256, rps19-p genes; evaluation of drought tolerance of allolines at different stages of ontogenesis (growth parameters, relative water content, quantum efficiency of Photosystem II, electron transport rate, energy dissipated in Photosystem II); and the study of drought tolerance regulator gene Dreb-1 with allele-specific PCR (AS-MARKER) and partial sequence analysis. Most allolines differ in genomic composition and T. dicoccum introgressions. Four allolines-D-b-05, D-d-05, D-d-05b, and D-41-05-revealed signs of drought tolerance of varying degrees. The more drought tolerant D-41-05 line was also characterized by Dreb-B1 allele introgression from T. dicoccum. A number of non-specific patterns and significant differences in allolines in regulation of physiological parameters in drought conditions is identified. Changes in photosynthetic activity in stress-drought are shown to reflect the level of drought tolerance of the forms studied. The contribution of different combinations of nuclear/cytoplasmic genome and alleles of Dreb-1 gene in allolines to the formation of stress tolerance and photosynthetic activity is discussed.


Assuntos
Secas , Fotossíntese , Melhoramento Vegetal , Estresse Fisiológico , Triticum/fisiologia , Alelos , Núcleo Celular , Cruzamentos Genéticos , DNA Mitocondrial/genética , Transporte de Elétrons , Genes de Plantas , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Triticum/genética , Água/análise
18.
BMC Bioinformatics ; 20(Suppl 1): 36, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30717653

RESUMO

Population structure of fungal infections in wheat differs between wheat varieties and environments. Taking into account evolution of host-pathogen interactions, genetic diversity of both wheat and fungus must be a monitored. In order to catalogue information to support need of wheat pathologists and breeders, who use conventional methods and Molecular Assisted Selection (MAS) techniques, we have developed the Molecular Identification of Genes for Resistance in Wheat (MIGREW) database. The main goal of this database is to support wheat breeding efforts to develop immunity to rusts and powdery mildew. MIGREW is also focused on effectiveness of wheat resistance genes in different regions of Russia to provide users relevant information on the rapidly changing population structure of pathogens.


Assuntos
Bases de Dados Genéticas , Resistência à Doença/genética , Genes de Plantas , Triticum/genética , Triticum/microbiologia , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética
19.
BMC Genomics ; 19(Suppl 3): 80, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29504906

RESUMO

BACKGROUND: The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS: A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION: The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.


Assuntos
Pão , Cromossomos de Plantas/genética , Mapeamento Físico do Cromossomo , Triticum/genética , Cromossomos Artificiais Bacterianos/genética , Reação em Cadeia da Polimerase
20.
BMC Plant Biol ; 17(Suppl 1): 188, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143603

RESUMO

BACKGROUND: The key gene in genetic system controlling the duration of the vegetative period in cereals is the VRN1 gene, whose product under the influence of low temperature (vernalization) promotes the transition of the apical meristem cells into a competent state for the development of generative tissues of spike. As early genetic studies shown, the dominant alleles of this gene underlie the spring forms of plants that do not require vernalization for this transition. In wheat allopolyploids various combinations of alleles of the VRN1 homoeologous loci (VRN1 homoeoalleles) provide diversity in such important traits as the time to heading, height of plants and yield. Due to genetical mapping of VRN1 loci it became possible to isolate the dominant VRN1 alleles and to study their molecular structure compared with the recessive alleles defining the winter type of plants. Of special interest is the process of divergence of VRN1 loci in the course of evolution from diploid ancestors to wheat allopolyploids of different levels of ploidy. RESULTS: Molecular analysis of VRN1 loci allowed to establish that various dominant alleles of these loci appeared as a result of mutations in two main regulatory regions: the promoter and the first intron. In the diploid ancestors of wheat, especially, in those of A- genome (T. boeoticum, T. urartu), the dominant VRN1 alleles are rare in accordance with a limited distribution of spring forms in these species. In the first allotetraploid wheat species including T. dicoccoides, T. araraticum (T. timopheevii), the spring forms were associated with a new dominant alleles, mainly, within the VRN-A1 locus. The process of accumulation of new dominant alleles at all VRN1 loci was significantly accelerated in cultivated wheat species, especially in common, hexaploid wheat T. aestivum, as a result of artificial selection of spring forms adapted to different climatic conditions and containing various combinations of VRN1 homoeoalleles. CONCLUSIONS: This mini-review summarizes data on the molecular structure and distribution of various VRN1 homoeoalleles in wheat allopolyploids and their diploid predecessors.


Assuntos
Diploide , Evolução Molecular , Poliploidia , Triticum/genética , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA