Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
iScience ; 26(12): 108364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025786

RESUMO

Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.

2.
Plant Physiol ; 189(2): 490-515, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302599

RESUMO

After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, pollen grains likely evolved mechanisms to quickly adapt to temperature changes to sustain elongation at the highest possible rate. We investigated these adaptions in tobacco (Nicotiana tabacum) pollen tubes grown in vitro under 22°C and 37°C by a multi-omics approach including lipidomic, metabolomic, and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress (HS), while triacylglycerols (TGs) changed less in respect to desaturation but increased in abundance. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acid levels increased during HS, including the noncodogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also, the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially upregulated and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated but also transcripts that have so far not been linked to HS. Transcripts involved in TG synthesis increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled, indicating other means of regulation. In conclusion, we show that tobacco pollen tubes are able to rapidly remodel their lipidome under HS likely by post-transcriptional and/or post-translational regulation.


Assuntos
Nicotiana , Tubo Polínico , Resposta ao Choque Térmico/genética , Lipídeos , Tubo Polínico/genética , Tubo Polínico/metabolismo , Esteróis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
3.
J Endocrinol ; 250(2): 67-79, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34014835

RESUMO

Bariatric surgery is still the most effective long-term weight-loss therapy. Recent data indicate that surgical outcomes may be affected by diurnal food intake patterns. In this study, we aimed to investigate how surgery-induced metabolic adaptations (i.e. weight loss) interact with circadian clock function. For that reason, vertical sleeve gastrectomy (VSG) was performed in obese mice and rhythms in behavior, tissue rhythmicity, and white adipose tissue transcriptome were evaluated. VSG under constant darkness conditions led to a maximum weight loss of 18% compared to a loss of 3% after sham surgery. Post-surgical weight development was characterized by two distinct intervals of catabolic and subsequent anabolic metabolic state. Locomotor activity was not affected. However, VSG significantly increased active phase meal frequency in the anabolic state. No significant effects on clock gene rhythmicity were detected in adrenal and white adipose tissue (WAT) explant cultures. Transcriptome rhythm analyses of subcutaneous WAT revealed a reduction of cycling genes after VSG (sham: 2493 vs VSG: 1013) independent of sustained rhythms in core clock gene expression. This may be a consequence of weight loss-induced morphological reconstruction of WAT that overwrites the direct influence of the local clock machinery on the transcriptome. However, VSG altered rhythmic transcriptional regulation of WAT lipid metabolism pathways. Thus, our data suggest a reorganization of diurnal metabolic rhythms after VSG downstream of the molecular clock machinery.


Assuntos
Cirurgia Bariátrica , Ritmo Circadiano/fisiologia , Obesidade/cirurgia , Redução de Peso , Animais , Comportamento Animal , Ritmo Circadiano/genética , Metabolismo Energético/fisiologia , Gastrectomia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/fisiologia
4.
Front Cell Dev Biol ; 8: 639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793592

RESUMO

Increased life expectancy in modern society comes at the cost of age-associated disabilities and diseases. Aged brains not only show reduced excitability and plasticity, but also a decline in inhibition. Age-associated defects in inhibitory circuits likely contribute to cognitive decline and age-related disorders. Molecular mechanisms that exert epigenetic control of gene expression contribute to age-associated neuronal impairments. Both DNA methylation, mediated by DNA methyltransferases (DNMTs), and histone modifications maintain neuronal function throughout lifespan. Here we provide evidence that DNMT1 function is implicated in the age-related loss of cortical inhibitory interneurons. Dnmt1 deletion in parvalbumin-positive interneurons attenuates their age-related decline in the cerebral cortex. Moreover, conditional Dnmt1-deficient mice show improved somatomotor performance and reduced aging-associated transcriptional changes. A decline in the proteostasis network, responsible for the proper degradation and removal of defective proteins, is implicated in age- and disease-related neurodegeneration. Our data suggest that DNMT1 acts indirectly on interneuron survival in aged mice by modulating the proteostasis network during life-time.

5.
EMBO Mol Med ; 12(9): e11908, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667137

RESUMO

Functional studies giving insight into the biology of circulating tumor cells (CTCs) remain scarce due to the low frequency of CTCs and lack of appropriate models. Here, we describe the characterization of a novel CTC-derived breast cancer cell line, designated CTC-ITB-01, established from a patient with metastatic estrogen receptor-positive (ER+ ) breast cancer, resistant to endocrine therapy. CTC-ITB-01 remained ER+ in culture, and copy number alteration (CNA) profiling showed high concordance between CTC-ITB-01 and CTCs originally present in the patient with cancer at the time point of blood draw. RNA-sequencing data indicate that CTC-ITB-01 has a predominantly epithelial expression signature. Primary tumor and metastasis formation in an intraductal PDX mouse model mirrored the clinical progression of ER+ breast cancer. Downstream ER signaling was constitutively active in CTC-ITB-01 independent of ligand availability, and the CDK4/6 inhibitor Palbociclib strongly inhibited CTC-ITB-01 growth. Thus, we established a functional model that opens a new avenue to study CTC biology.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Animais , Biomarcadores Tumorais , Carcinogênese , Variações do Número de Cópias de DNA , Feminino , Humanos , Camundongos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia
6.
Cereb Cortex ; 30(7): 3921-3937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147726

RESUMO

The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten-eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.


Assuntos
Metilação de DNA/genética , Endocitose/genética , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Inibição Neural/genética , Sinapses/metabolismo , Animais , Clatrina , Proteínas do Citoesqueleto/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenoma , Epilepsia do Lobo Temporal/genética , Humanos , Potenciais Pós-Sinápticos Inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Sinápticas/metabolismo , Transcriptoma
7.
J Clin Endocrinol Metab ; 104(5): 1687-1696, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535338

RESUMO

CONTEXT: Chronodisruption, as caused by such conditions as perturbations of 24-hour rhythms of physiology and behavior, may promote the development of metabolic diseases. OBJECTIVE: To assess the acute effects of sleep curtailment on circadian regulation (i.e., morning-to-evening differences) of white adipose tissue (WAT) transcriptome in normal-weight men. DESIGN: Fifteen healthy men aged 18 to 30 years (mean ± SEM, 24.0 ± 0.9years) were studied. In randomized, balanced order they underwent three separate nights with regular sleep duration (8 hours of sleep between 11:00 pm and 7:00 am), sleep restriction (4 hours of sleep between 3:00 am and 7:00 am), and sleep deprivation (no sleep at all). Sleep was polysomnographically evaluated. WAT biopsy samples were taken twice at 9:00 pm and 7:00 am to assess morning-to-evening differences. WAT transcriptome profile was assessed by RNA sequencing, and expression of relevant circadian core clock genes were analyzed. Glucose homeostasis, lipid profile, and adipokines were assessed. RESULTS: Sleep restriction dramatically blunted morning-to-evening transcriptome variations with further dampening after sleep deprivation. Although most core clock genes remained stably rhythmic, morning-to-evening regulated pathways of carbohydrate and lipid metabolism were highly sensitive to sleep loss. In particular, genes associated with carbohydrate breakdown lost rhythmicity after sleep deprivation, with an overall trend toward an upregulation in the morning. In line with specific transcriptional changes in WAT, retinol-binding-protein 4 was increased and ß-cell secretory capacity was diminished. CONCLUSIONS: Acute sleep loss induces a profound restructuring of morning-to-evening WAT transcriptome with uncoupling from the local clock machinery, resulting in increased WAT carbohydrate turnover and impaired glucose homeostasis. Our data support an optimization of sleep duration and timing to prevent metabolic disorders such as obesity and type 2 diabetes.


Assuntos
Tecido Adiposo Branco/metabolismo , Biomarcadores/análise , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Privação do Sono/genética , Transcriptoma , Adolescente , Adulto , Seguimentos , Humanos , Masculino , Privação do Sono/metabolismo , Adulto Jovem
8.
Haematologica ; 103(1): 18-29, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025910

RESUMO

Hematopoietic differentiation is driven by transcription factors, which orchestrate a finely tuned transcriptional network. At bipotential branching points lineage decisions are made, where key transcription factors initiate cell type-specific gene expression programs. These programs are stabilized by the epigenetic activity of recruited chromatin-modifying cofactors. An example is the association of the transcription factor RUNX1 with protein arginine methyltransferase 6 (PRMT6) at the megakaryocytic/erythroid bifurcation. However, little is known about the specific influence of PRMT6 on this important branching point. Here, we show that PRMT6 inhibits erythroid gene expression during megakaryopoiesis of primary human CD34+ progenitor cells. PRMT6 is recruited to erythroid genes, such as glycophorin A Consequently, a repressive histone modification pattern with high H3R2me2a and low H3K4me3 is established. Importantly, inhibition of PRMT6 by shRNA or small molecule inhibitors leads to upregulation of erythroid genes and promotes erythropoiesis. Our data reveal that PRMT6 plays a role in the control of erythroid/megakaryocytic differentiation and open up the possibility that manipulation of PRMT6 activity could facilitate enhanced erythropoiesis for therapeutic use.


Assuntos
Diferenciação Celular/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Biomarcadores , Linhagem Celular , Eritropoese/genética , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética
9.
Immun Inflamm Dis ; 6(1): 34-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28952190

RESUMO

INTRODUCTION: Murine hepatic NK cells exhibit adaptive features, with liver-specific adhesion molecules CXCR6 and CD49a acting as surface markers. METHODS: We investigated human liver-resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. RESULTS: Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver-resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver-resident double-positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single-positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL-12 and IL-15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver-resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. CONCLUSION: IL-12 and IL-15 may be key for generating NK cells with a tissue-homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue-homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease.


Assuntos
Regulação da Expressão Gênica/imunologia , Integrina alfa1/imunologia , Interleucina-12/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Receptores CXCR6/imunologia , Doença Crônica , Feminino , Humanos , Tolerância Imunológica , Células Matadoras Naturais/patologia , Fígado/patologia , Hepatopatias/imunologia , Hepatopatias/patologia , Masculino , Células Th1/imunologia , Células Th1/patologia
10.
Cereb Cortex ; 27(12): 5696-5714, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117290

RESUMO

The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Interneurônios/enzimologia , Células-Tronco Neurais/enzimologia , Área Pré-Óptica/embriologia , Animais , Animais Recém-Nascidos , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Metilação de DNA , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/enzimologia , Interneurônios/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Crescimento Neuronal/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/enzimologia , Técnicas de Cultura de Tecidos , Transcriptoma , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
11.
Gene ; 595(2): 161-167, 2016 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-27688072

RESUMO

The hypomethylation of DNA may support tumor progression; however, the mechanism underlying this relationship is not clear. Several studies have demonstrated that the in vitro application of the methyl donor S-adenosylmethionine (SAM) leads to promoter remethylation and the downregulation of proto-oncogene expression in cancer cells. It is not clear if this represents a general mechanism of SAM or is limited to selected genes. We examined this problem using new bisulfite sequencing and transcriptomic technologies. Treatment with SAM caused the downregulation of proliferation, migration, and invasion of prostate cancer (PC-3) cells. RNA sequencing revealed the genome-wide downregulation of genes involved in proliferation, migration, invasion, and angiogenesis. Real-time PCR of a subset of the genes confirmed these results. Reduced representation bisulfite sequencing (RRBS) displayed only minor differential methylation between treated cells and controls. In summary, we confirmed the anti-proliferative and anti-invasive effects of SAM. Additionally, we observed anti-migratory effects and downregulation of genes, especially those related to cancerogenesis. For some of the related genes, this is the first reported evidence of an association with prostate cancer. However, genome-wide modifications in methylation profiles were not observed by RRBS; thus, they are obviously not a major cause of alteration in transcription profiles and anti-cancer effects.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , S-Adenosilmetionina/farmacologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/genética , Proto-Oncogene Mas , Análise de Sequência de RNA/métodos , Sulfitos , Células Tumorais Cultivadas
12.
Sci Rep ; 6: 29122, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385131

RESUMO

Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP.


Assuntos
Callithrix/genética , Células-Tronco Embrionárias/metabolismo , Genoma , Transcriptoma/genética , Animais , Biomarcadores/metabolismo , Blastocisto/citologia , Diferenciação Celular/genética , Linhagem Celular , Forma Celular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cariotipagem , Masculino , Mórula/citologia , Processos de Determinação Sexual/genética , Teratoma/patologia , Inativação do Cromossomo X/genética
13.
PLoS Genet ; 12(3): e1005946, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26990877

RESUMO

A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , MicroRNAs/biossíntese , Proteínas de Fusão Oncogênica/genética , Diferenciação Celular/genética , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Leucemia Mieloide Aguda/patologia , Megacariócitos/citologia , MicroRNAs/genética , Proteínas de Fusão Oncogênica/biossíntese
14.
CNS Neurosci Ther ; 22(5): 387-95, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26842941

RESUMO

AIM AND METHODS: Different types of insults to the CNS lead to axon demyelination. Remyelination occurs when the CNS attempts to recover from myelin loss and requires the activation of oligodendrocyte precursor cells. With the rationale that CB1 receptor is expressed in oligodendrocytes and marijuana consumption alters CNS myelination, we study the effects of the cannabinoid agonist WIN55212.2 in (1) an in vitro model of oligodendrocyte differentiation and (2) the cuprizone model for demyelination. RESULTS: The synthetic cannabinoid agonist WIN55212.2 at 1 µM increased the myelin basic protein mRNA and protein expression in vitro. During cuprizone-induced acute demyelination, the administration of 0.5 mg/kg WIN55212.2 confers more myelinated axons, increased the expression of retinoid X receptor alpha, and declined nogo receptor expression. Controversially, 1 mg/kg of the drug increased the number of demyelinated axons and reduced the expression of nerve growth factor inducible, calreticulin and myelin-related genes coupling specifically with a decrease in 2',3'-cyclic nucleotide 3' phosphodiesterase expression. CONCLUSION: The cannabinoid agonist WIN55212.2 promotes oligodendrocyte differentiation in vitro. Moreover, 0.5 mg/kg of the drug confers neuroprotection during cuprizone-induced demyelination, while 1 mg/kg aggravates the demyelination process.


Assuntos
Benzoxazinas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/patologia , Quelantes/toxicidade , Cuprizona/toxicidade , Morfolinas/uso terapêutico , Naftalenos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Oligodendroglia/efeitos dos fármacos , Animais , Benzoxazinas/farmacologia , Linhagem Celular Transformada , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Corpo Caloso/ultraestrutura , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Naftalenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Transcriptoma
15.
Clin Exp Rheumatol ; 34(1): 17-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26574749

RESUMO

OBJECTIVES: The aim of this study was a large scale investigation of myositis-associated circulating miRNA molecules and also determination of expression of these candidate molecules in relation to clinical activity of myositis. METHODS: RNA, containing also miRNAs, was isolated from sera of 28 patients suffering from idiopathic inflammatory myopathies (IIM) and 16 healthy controls. Expression of miRNAs was determined using a miRNA microarray method. Statistical analysis of miRNA expression was carried out using Arraystar software. RESULTS: Our results showed 23 significantly differentially expressed miRNAs. Six miRNAs were differentially expressed in IIM compared to healthy controls. In dermatomyositis (DM) we found 3 and in polymyositis (PM) 6 differentially expressed miRNAs compared to controls. Three miRNAs were up-regulated in patients with highly active disease compared to patients with low disease activity. Furthermore, we found 26 significantly differentially expressed miRNAs in SLE patients compared to IIM, DM and PM patients. CONCLUSIONS: This is the first study that comprehensively describes expression levels of circulating miRNAs in serum of patients suffering from IIM. It can be expected that some of these deregulated miRNA molecules are involved in aetiology of IIM and may potentially serve as molecular markers for IIM development or for monitoring of disease activity.


Assuntos
Dermatomiosite/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Adulto , Estudos de Casos e Controles , Dermatomiosite/sangue , Feminino , Regulação da Expressão Gênica , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Software
16.
Glia ; 64(4): 635-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26683584

RESUMO

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon ß-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.


Assuntos
Lesões Encefálicas/imunologia , Isquemia Encefálica/imunologia , Infecções por Escherichia coli/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Microglia/imunologia , Acidente Vascular Cerebral/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Modelos Animais de Doenças , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Retroalimentação Fisiológica/fisiologia , Infarto da Artéria Cerebral Média , Interferon beta/metabolismo , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Acidente Vascular Cerebral/patologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
17.
Stem Cells Int ; 2016: 2480298, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26664406

RESUMO

We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripotent stem cell markers including OCT4A (POU5F1). This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs). OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and-after significant refinement-possibly also the production of monkey oocytes.

18.
Sci Immunol ; 1(3): eaaf8665, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28783680

RESUMO

Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses.

19.
Ann Clin Transl Neurol ; 2(9): 875-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401510

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is a disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Based on infiltrating immune cells, deposition of humoral factors and loss of oligodendrocytes and/or myelin proteins, four lesion patterns have been described. Pattern II is characterized by antibody and complement deposition in addition to T-cell infiltration. MS is considered a T-cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Our objective was to identify, isolate, and characterize brain-infiltrating clonally expanded T cells in pattern II MS lesions. METHODS: We used next-generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions, subsequently isolated these as T-cell clones from autologous cerebrospinal fluid and functionally characterized them. RESULTS: We identified clonally expanded CD8(+) but also CD4(+) T cells in demyelinating pattern II lesions and for the first time were able to isolate these as live T-cell clones. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T-cell infiltrate in pattern II brain lesions. INTERPRETATION: Our data provide the first functional evidence for a putative role of Th2/Tc2 cells in pattern II MS supporting the existence of this pathogenic phenotype and questioning the protective role that is generally ascribed to Th2 cells. Our observations are important to consider for future treatments of pattern II MS patients.

20.
Leuk Res ; 39(10): 1079-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26278198

RESUMO

We genetically analyzed a group of high risk MDS/AML patients treated by a combination of azacitidine and lenalidomide. In our cohort, the extent of genetic rearrangements was associated with outcome and response to treatment. The size of total genomic aberrations as defined by molecular karyotyping (SNP-array analysis) was a predictive marker for overall survival. TP53 mutations were associated with therapy refractoriness only if accompanied by heavily rearranged chromosomes. This study suggests a potential value of molecular karyotyping as a method to objectivate comprehensively the extent of genetic alterations in high risk patients with complex karyotypes, especially if the clinical value of the size of total genomic aberrations and the fragmentation status of single chromosomes could be evaluated in larger therapy trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cariotipagem/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Azacitidina/administração & dosagem , Aberrações Cromossômicas , Feminino , Humanos , Estimativa de Kaplan-Meier , Lenalidomida , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Modelos de Riscos Proporcionais , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA