Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 5: 3268, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24500329

RESUMO

Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.

2.
Phys Rev Lett ; 108(5): 057401, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400960

RESUMO

We report on the resonant emission in coherently driven single semiconductor quantum dots. We demonstrate that an ultraweak nonresonant laser acts as an optical gate for the quantum dot resonant response. We show that the gate laser suppresses Coulomb blockade at the origin of a resonant emission quenching, and that the optically gated quantum dots systematically behave as ideal two-level systems in both regimes of coherent and incoherent resonant emission.

3.
Phys Rev Lett ; 107(16): 166604, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22107413

RESUMO

In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum dots in longitudinal magnetic fields applied along the growth axis, we observe in addition to the expected bright states also nominally dark transitions for both charged and neutral excitons. We uncover a strongly nonmonotonic, sign-changing field dependence of the bright neutral exciton splitting resulting from the interplay between exchange and Zeeman effects. Our theory shows quantitatively that these surprising experimental results are due to magnetic-field-induced ±3/2 heavy-hole mixing, an inherent property of systems with C(3v) point-group symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA