Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767571

RESUMO

Nanostructured materials present improved thermoelectric properties due to non-trivial effects at the nanoscale. However, the characterization of individual nanostructures, especially from the thermal point of view, is still an unsolved topic. This work presents the complete structural, morphological, and thermoelectrical evaluation of the selfsame individual bottom-up integrated nanowire employing an innovative micro-machined device compatible with transmission electron microscopy whose fabrication is also discussed. Thanks to a design that arranges the nanostructured samples completely suspended, detailed structural analysis using transmission electron microscopy is enabled. In the same device architecture, electrical collectors and isolated heaters are available at both ends of the trenches for thermoelectrical measurements of the nanowire i.e. thermal and electrical properties simultaneously. This allows the direct measurement of the nanowire power factor. Furthermore, micro-Raman thermometry measurements were performed to evaluate the thermal conductivity of the same suspended silicon nanowire. A thermal profile of the self-heating nanowire could be spatially resolved and used to compute the thermal conductivity. In this work, heavily-doped silicon nanowires were grown on this microdevices yielding a thermal conductivity of 30.8 ± 1.7 W Km-1 and a power factor of 2.8 mW mK-2 at an average nanowire temperature of 400 K. Notably, no thermal contact resistance was observed between the nanowire and the bulk, confirming the epitaxial attachment. The device presented here shows remarkable utility in the challenging thermoelectrical characterization of integrated nanostructures and in the development of multiple devices such as thermoelectric generators.

2.
Small ; 20(16): e2305831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088536

RESUMO

A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rough nature of the NW surface, which prohibits vacuum-SThM due to loose contact for heat dissipation, is circumvented by decorating the NW with periodic platinum dots. Reproducible approaches over these dots, enabled by the live feedback image provided by the SEM, yield a strong improvement in thermal contact resistance and a higher accuracy in its estimation. The results-thermal resistance at the tip-sample contact of 188±3.7K µW-1 and thermal conductivity of the NW of 13.7±1.6W m-1 K-1-are obtained by performing a series of approach curves on the dots. Noteworthy, the technique allows measuring elastic properties at the same time-the moment of inertia of the NW is found to be (6.1±1.0) × 10-30m4-which permits to correlate the respective effects of the rough shell on heat dissipation and on the NW stiffness. The work highlights the capabilities of the dual SThM/SEM instrument, in particular the interest of systematic approach curves with well-positioned and monitored tip motion.

3.
Small ; 19(17): e2206399, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36720043

RESUMO

Semiconductor nanowires have demonstrated fascinating properties with applications in a wide range of fields, including energy and information technologies. Particularly, increasing attention has focused on SiGe nanowires for applications in a thermoelectric generation. In this work, a bottom-up vapour-liquid-solid chemical vapour Deposition methodology is employed to integrate heavily boron-doped SiGe nanowires on thermoelectric generators. Thermoelectrical properties -, i.e., electrical and thermal conductivities and Seebeck coefficient - of grown nanowires are fully characterized at temperatures ranging from 300 to 600 K, allowing the complete determination of the Figure-of-merit, zT, with obtained values of 0.4 at 600 K for optimally doped nanowires. A correlation between doping level, thermoelectric performance, and elemental distribution is established employing advanced elemental mapping (synchrotron-based nano-X-ray fluorescence). Moreover, the operation of p-doped SiGe NWs integrated into silicon micromachined thermoelectrical generators is shown over standalone and series- and parallel-connected arrays. Maximum open circuit voltage of 13.8 mV and power output as high as 15.6 µW cm-2 are reached in series and parallel configurations, respectively, operating upon thermal gradients generated with hot sources at 200 °C and air flows of 1.5 m s-1 . These results pave the way for direct application of SiGe nanowire-based micro-thermoelectric generators in the field of the Internet of Things.

4.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458033

RESUMO

Micromachined devices were developed and fabricated using complementary metal-oxide-semiconductor (CMOS)/micro-electro-mechanical systems (MEMS) technology allowing for the analysis of transport properties of silicon sub-micron beams having monolithic contacts. The beams were fabricated by a combination of deep reactive ion etching (RIE) and potassium hydroxide (KOH) etching techniques on standard p and n silicon bulk and silicon-on-insulator (SOI) wafers. Simultaneous fabrication of many devices on one wafer allows for the extraction of statistical information to properly compare the different layers and contacts. Fabricated devices are presented, underlining the feasibility of the proposed microdevice. The methods used to manipulate the geometry and the surface roughness of the single crystalline silicon beams are described. The presented measurement device offers the possibility to determine simultaneously all the main transport values, thermal, and electrical conductivities as well as the Seebeck coefficient.

5.
Nanoscale ; 13(15): 7252-7265, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889903

RESUMO

Semiconductor nanowires have demonstrated fascinating properties with application in a wide range of fields including energy and information technologies. In particular, increasing attention has been focused on Si and SiGe nanowires for application in thermoelectric generation after recent successful implementation in miniaturized devices. Despite this interest, an appropriate evaluation of thermal conductivity in such nanostructures still poses a great challenge, especially if the characterization of the device-integrated nanowire is desired. In this work, a spatially resolved technique based on scanning thermal microscopy has been demonstrated for the assessment of the thermal conductivity of Si and SiGe nanowires integrated in thermoelectrical microgenerators. Thermal conductivity values of 15.8 ± 0.8 W m-1 K-1 and 4.2 ± 0.3 W m-1 K-1 were measured for Si and SiGe nanowires, respectively, epitaxially grown on silicon microstructures. Moreover, the range of applicability according to the sample thermal conductance and associated errors are discussed to establish the potential of the novel technique. The results presented here show the remarkable utility of scanning thermal microscopy for the challenging thermal characterization of integrated nanostructures and the development of multiple devices such as thermoelectric generators or photovoltaic cells.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670539

RESUMO

The thermoelectric performance of nanostructured low dimensional silicon and silicon-germanium has been functionally compared device-wise. The arrays of nanowires of both materials, grown by a VLS-CVD (Vapor-Liquid-Solid Chemical Vapor Deposition) method, have been monolithically integrated in a silicon micromachined structure in order to exploit the improved thermoelectric properties of nanostructured silicon-based materials. The device architecture helps to translate a vertically occurring temperature gradient into a lateral temperature difference across the nanowires. Such thermocouple is completed with a thin film metal leg in a unileg configuration. The device is operative on its own and can be largely replicated (and interconnected) using standard IC (Integrated Circuits) and MEMS (Micro-ElectroMechanical Systems) technologies. Despite SiGe nanowires devices show a lower Seebeck coefficient and a higher electrical resistance, they exhibit a much better performance leading to larger open circuit voltages and a larger overall power supply. This is possible due to the lower thermal conductance of the nanostructured SiGe ensemble that enables a much larger internal temperature difference for the same external thermal gradient. Indeed, power densities in the µW/cm2 could be obtained for such devices when resting on hot surfaces in the 50-200 °C range under natural convection even without the presence of a heat exchanger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA