Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuroimage ; 292: 120617, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636639

RESUMO

A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adulto , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Encéfalo/diagnóstico por imagem , Adolescente , Adulto Jovem , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Lactente , Criança , Envelhecimento/fisiologia , Pré-Escolar , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Idoso de 80 Anos ou mais , Neuroimagem/métodos , Neuroimagem/normas , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/normas
2.
Psychiatry Res Neuroimaging ; 333: 111655, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201216

RESUMO

Clinicians often face a dilemma in diagnosing bipolar disorder patients with complex symptoms who spend more time in a depressive state than a manic state. The current gold standard for such diagnosis, the Diagnostic and Statistical Manual (DSM), is not objectively grounded in pathophysiology. In such complex cases, relying solely on the DSM may result in misdiagnosis as major depressive disorder (MDD). A biologically-based classification algorithm that can accurately predict treatment response may help patients suffering from mood disorders. Here we used an algorithm to do so using neuroimaging data. We used the neuromark framework to learn a kernel function for support vector machine (SVM) on multiple feature subspaces. The neuromark framework achieves up to 95.45% accuracy, 0.90 sensitivity, and 0.92 specificity in predicting antidepressant (AD) vs. mood stabilizer (MS) response in patients. We incorporated two additional datasets to evaluate the generalizability of our approach. The trained algorithm achieved up to 89% accuracy, 0.88 sensitivity, and 0.89 specificity in predicting the DSM-based diagnosis on these datasets. We also translated the model to distinguish responders to treatment from nonresponders with up to 70% accuracy. This approach reveals multiple salient biomarkers of medication-class of response within mood disorders.


Assuntos
Antipsicóticos , Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtornos do Humor/diagnóstico por imagem , Transtornos do Humor/tratamento farmacológico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Antipsicóticos/uso terapêutico , Neuroimagem
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 251-254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085708

RESUMO

Brain functional connectivity has been shown to provide a type of fingerprint for adult subjects. However, most studies tend to focus on the connectivity strength rather than its stability across scans. In this study, we performed for the first time a large-scale analysis of within-individual stability of functional connectivity (FC) using 9071 children from the Adolescent Brain Cognitive Development database. Functional network connectivity (FNC) was extracted via a fully automated independent component analysis framework. We found that children's FNC is robust and stable with high similarity across scans and serves as a fingerprint that can identify an individual child from a large group. The robustness of this finding is supported by replicating the identification in the two-year follow-up session and between longitudinal sessions. More interestingly, we discovered that the within-individual FNC stability was predictive of cognitive performance and psychiatric problems in children, with higher FNC stability correlating with better cognitive performance and fewer dimensional psychopathology. The overall results indicate that the FNC of children also shows reliable within-individual stability, acting as a fingerprint for distinguishing participants, regardless of significant growth and development in the children's brain. FC stability can be a valuable imaging marker to predict early cognitive and psychiatric behaviors in children. Clinical Relevance---The stability of functional connectivity can be used to identify children from a large group and to draw inferences on early-age cognitive and psychiatric behaviors.


Assuntos
Encéfalo , Cognição , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Bases de Dados Factuais , Família , Humanos
4.
Brain Connect ; 12(1): 85-95, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34039009

RESUMO

Background: Functional magnetic resonance imaging (fMRI) is a brain imaging technique that provides detailed insights into brain function and its disruption in various brain disorders. The data-driven analysis of fMRI brain activity maps involves several postprocessing steps, the first of which is identifying whether the estimated brain network maps capture signals of interest, for example, intrinsic connectivity networks (ICNs), or artifacts. This is followed by linking the ICNs to standardized anatomical and functional parcellations. Optionally, as in the study of functional network connectivity (FNC), rearranging the connectivity graph is also necessary to facilitate interpretation. Methods: Here we develop a novel and efficient method (Autolabeler) for implementing and integrating all of these processes in a fully automated manner. The Autolabeler method is pretrained on a cross-validated elastic-net regularized general linear model from the noisecloud toolbox to separate neuroscientifically meaningful ICNs from artifacts. It is capable of automatically labeling activity maps with labels from several well-known anatomical and functional parcellations. Subsequently, this method also maximizes the modularity within functional domains to generate a more systematically structured FNC matrix for post hoc network analyses. Results: Results show that our pretrained model achieves 86% accuracy at classifying ICNs from artifacts in an independent validation data set. The automatic anatomical and functional labels also have a high degree of similarity with manual labels selected by human raters. Discussion: At a time of ever-increasing rates of generating brain imaging data and analyzing brain activity, the proposed Autolabeler method is intended to automate such analyses for faster and more reproducible research. Impact statement Our proposed method is capable of implementing and integrating some of the crucial tasks in functional magnetic resonance imaging (fMRI) studies. It is the first to incorporate such tasks without the need for expert intervention. We develop an open-source toolbox for the proposed method that can function as stand-alone software and additionally provides seamless integration with the widely used group independent component analysis for fMRI toolbox (GIFT). This integration can aid investigators to conduct fMRI studies in an end-to-end automated manner.


Assuntos
Mapeamento Encefálico , Encéfalo , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
5.
Front Neurosci ; 13: 873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507357

RESUMO

The study of dynamic functional network connectivity (dFNC) has been important to understand the healthy and diseased brain. Recent developments model groups of functionally related brain structures (defined as functional domains) as entities that can send and receive information. A domain analysis starts by detecting a finite set of connectivity patterns known as domain states within each functional domain. Dynamic functional domain connectivity (DFDC) is a novel information theoretic framework for studying the temporal sequence of the domain states and the amount of information shared among domains. In this setting, the information flow among functional domains can be compared to the flow of bits among entities in a digital network. Schizophrenia is a chronic psychiatric disorder which is associated with how the brain processes information. Here, we employed the DFDC framework to analyze a dataset containing resting-state fMRI scans from 163 healthy controls (HCs) and 151 schizophrenia patients (SZs). As in other information theory methods, this study measured domain state probabilities, entropy within each DFDC and the cross-domain mutual information (CDMI) between pairs of DFDC. Results indicate that SZs show significantly higher (transformed) entropy than HCs in subcortical (SC)-SC; default mode network (DMN)-visual (VIS) and frontoparietal (FRN)-VIS DFDCs. SZs also show lower (transformed) CDMI between SC-VIS vs. SC-sensorimotor (SM), attention (ATTN)-VIS vs. ATTN-SM and ATTN-SM vs. ATTN-ATTN DFDC pairs after correcting for multiple comparisons. These results imply that different DFDC pairs function in a more independent manner in SZs compared to HCs. Our findings present evidence of higher uncertainty and randomness in SZ brain function.

6.
Neuroimage Clin ; 22: 101747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921608

RESUMO

Brain functional networks identified from fMRI data can provide potential biomarkers for brain disorders. Group independent component analysis (GICA) is popular for extracting brain functional networks from multiple subjects. In GICA, different strategies exist for reconstructing subject-specific networks from the group-level networks. However, it is unknown whether these strategies have different sensitivities to group differences and abilities in distinguishing patients. Among GICA, spatio-temporal regression (STR) and spatially constrained ICA approaches such as group information guided ICA (GIG-ICA) can be used to propagate components (indicating networks) to a new subject that is not included in the original subjects. In this study, based on the same a priori network maps, we reconstructed subject-specific networks using these two methods separately from resting-state fMRI data of 151 schizophrenia patients (SZs) and 163 healthy controls (HCs). We investigated group differences in the estimated functional networks and the functional network connectivity (FNC) obtained by each method. The networks were also used as features in a cross-validated support vector machine (SVM) for classifying SZs and HCs. We selected features using different strategies to provide a comprehensive comparison between the two methods. GIG-ICA generally showed greater sensitivity in statistical analysis and better classification performance (accuracy 76.45 ±â€¯8.9%, sensitivity 0.74 ±â€¯0.11, specificity 0.79 ±â€¯0.11) than STR (accuracy 67.45 ±â€¯8.13%, sensitivity 0.65 ±â€¯0.11, specificity 0.71 ±â€¯0.11). Importantly, results were also consistent when applied to an independent dataset including 82 HCs and 82 SZs. Our work suggests that the functional networks estimated by GIG-ICA are more sensitive to group differences, and GIG-ICA is promising for identifying image-derived biomarkers of brain disease.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Factuais/classificação , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/classificação , Esquizofrenia/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Análise de Componente Principal/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA