Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Clin Neurosci ; 13(2): 207-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425947

RESUMO

Introduction: The present study addressed whether methylprednisolone (MP) as an anti-inflammatory drug used in neurodegenerative diseases and neural stem/progenitor cells (NS/PCs) is safe. Methods: First, embryonic rat NS/PCs were exposed to different concentrations of MP, and then we evaluated their survival by MTT assay, proliferation by analyzing the number and diameter of neurospheres, and the migration of the cells by neurosphere assay. Results: The viability of NS/PCs was reduced following exposure to 10, 15, and 20 µg/mL of MP. In addition, although the number of neurospheres did not change, exposure to different concentrations of MP resulted in the formation of smaller neurospheres. Despite these undesirable effects, the highest concentration of MP (20 µg/mL) increased the migration capacity of the NS/PCs. Conclusion: The combination of MP and NS/PCs is not recommended due to the adverse effects of MP on the survival and proliferation of NS/PCs. Highlights: Methylprednisolone reduced survival of neural stem/progenitor cells.Methylprednisolone decreased proliferation of neural stem/progenitor cells.The highest concentration of MP (20 µg/mL) increased the migration capacity of the neural stem/progenitor cells. Plain Language Summary: In this study, we evaluate the effect of the exposure of neural stem/progenitor cells to methylprednisolone. Based on the results, combination of neural stem/progenitor cells and methylprednisolone not recommended due to reduction of survival and proliferation of the cells.

2.
Biomater Adv ; 139: 213019, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882114

RESUMO

Cartilage engineering has the potential to overcome clinical deficiency in joint disorders. Decellularized extracellular matrix (dECM) has great biocompatibility and bioactivity and can be considered an appropriate natural scaffold for tissue engineering applications. Both insulin-like growth factor-1 (IGF-1) and mechanical compression stimulate the production of cartilage ECM, modulate mechanical properties, and gene expression. The current investigation aimed to fabricate a high-quality moldable artificial cartilage by exposing the chondrocytes in biomimicry conditions using cartilage dECM, IGF-1, and mechanical stimulations. In this study, an ad hoc bioreactor was designed to apply dynamic mechanical stimuli (10 % strain, 1 Hz) on chondrocyte-laden cartilage dECM-constructs with/without IGF-1 supplementation for 2 weeks, 3 h/day. Our data revealed that mechanical stimulation had no adverse effect on cell viability and proliferation. However, it elevated the expression of chondrogenic markers such as collagen type II (COL2A1), aggrecan (ACAN), and proteoglycan-4 (PRG-4), and reduced the expression of matrix metalloproteinase-3 (MMP-3). Mechanical stimulation also promoted higher newly formed glycosaminoglycan (GAG) and produced more aligned fibers that can be responsible for higher Young's modulus of the engineered construct. Even though IGF-1 demonstrated some extent of improvement in developing neocartilage, it was not as effective as mechanical stimulation. Neither IGF-1 nor compression elevated the collagen type I expression. Compression and IGF-1 showed a synergistic impact on boosting the level of COL2A1 but not the other factors. In conclusion, mechanical stimulation on moldable cartilage dECM can be considered a good technique to fabricate artificial cartilage with higher functionality.


Assuntos
Cartilagem Articular , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Matriz Extracelular Descelularizada , Fator de Crescimento Insulin-Like I/genética , Engenharia Tecidual/métodos
3.
Cell Tissue Bank ; 23(4): 669-683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34665403

RESUMO

3D porous hydroxyapatite (HA) has been reinforced by zirconia (ZrO2) coating and impregnation with a combination of platelet rich plasma (PRP) as a source of growth factors (GFs) and Heparin sulfate (HS) to sustain the release of GFs. Adipose mesenchymal stem cells (ADMSCs) were characterized by flow cytometry for CD (cluster of differentiation) 44, CD105, CD106, CD34 and CD144, along with checking the multipotency by differentiation into the adipocytes and osteoblasts. Then, they were cultured on the scaffold treated with and without osteogenic media on days 7, 14 and 21. Electron micrograph and PKH staining show that the ADMSCs have a fusiform phenotype in the absence of osteogenic induction. Cell viability assay shows a higher number of the viable cells on the PRP-containing scaffolds than PRP-free scaffolds on day 7. Colorimetric evaluation, quantitative RT-PCR and immunocytochemistry demonstrate that PRP and HS significantly elevate the alkaline phosphatase enzyme activity and also accelerate the production of both early and mid-osteogenic markers, including collagen I and osteopontin expression with and without osteogenic conditions. The PRP-HS also accelerates the expression of the late osteogenic marker, osteocalcin, in both mRNA and protein level expression with a peak on day 21. In conclusion, supplementation of HA/ZrO2 with PRP/HS has a synergistic impact on the ADMSCs, even in the absence of chemical induction. It seems that HA/ZrO2/PRP/HS scaffold provides a higher osteoconductive microenvironment for stem cell differentiation to osteoblasts.


Assuntos
Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Durapatita/farmacologia , Durapatita/análise , Durapatita/química , Heparina , Sulfatos/análise , Sulfatos/metabolismo , Osteogênese , Plasma Rico em Plaquetas/metabolismo , Osteoblastos , Diferenciação Celular , Células Cultivadas
4.
Transl Neurodegener ; 6: 29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093814

RESUMO

BACKGROUND: Extensive loss of donor neural stem cell (NSCs) due to ischemic stress and low rate of differentiation at the site of cell graft are two of the major issues that hamper optimal outcome in NSCs transplantation studies. Given that histone deacetylases (HDACs) modulate various cellular processes by deacetylating histones and non-histone proteins, we hypothesized that combined treatment with small molecules, sodium butyrate (NaB; a known HDAC inhibitor) and nicorandil, will enhance the rate neuronal differentiation of NSCs besides their preconditioning to resist oxidative stress. METHODS: NSCs derived from 14-day old Sprague Dawley rat ganglion eminence were characterized for tri-lineage differentiation. Treatment with 1 mM NaB significantly changed their culture characteristics while continuous treatment for 10 days enhanced their neural differentiation. NaB treatment also preconditioned the cells for their resistance to oxidative stress. RESULTS: The highest rate of neural differentiation and preconditioning effect was achieved when the NSCs were treated concomitantly with NaB and nicorandil. Cell proliferation assay showed that concomitant treatment with NaB and nicorandil retarded their rate of proliferation. CONCLUSION: These data conclude that preconditioning of NSCs with NaB and nicorandil effectively enhances their differentiation capacity besides preconditioning the cells to support their survival under ischemic conditions.

5.
Tissue Eng Regen Med ; 14(5): 587-593, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30603512

RESUMO

Human breast milk stem cells (hBSCs) contain a population of cells with the ability to differentiate into various cell lineages for cell therapy applications. The current study examined the differentiation potential of hBSCs into hepatocytes-like cells. The cells were isolated from the breast milk and were treated with hepatogenic medium containing hepatocyte growth factor, insulin-like growth factor and dexamethasone for 7 days subsequently; Oncostatin M was added to the culture media. RT-PCR and immunocytochemistry were performed to detect the hepatogenic markers. The glycogen storage and the ability of the cells to absorb and release indocynanin green were also tested. The data showed that most of the differentiated cells formed cell aggregates after the 30th day, with more cells accumulated to form spheroids. RT-PCR revealed the expression of the hepatic nuclear factor, albumin, cytokeratin 18 and 19, cytochrome P2B6, glucose-6-phospahtase and claudin. The functional assays also showed glycogen storage and omission of indicynine green. Our study demonstrated hBSCs are novel population that can differentiate into hepatocyte-like cells.

6.
Cell Biol Int ; 39(5): 611-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25572907

RESUMO

Fresh human breast milk consists of a heterogeneous population of cells that may offer a non-invasive source of cells for therapeutic proposes. The aims of this study were to characterize the breast milk-derived cells cultured in vitro. To do this, the cells from human breast milk were cultured and the expression of the CD markers along with the embryonic stem cell markers, endothelial and luminal mammary epithelial cell markers was evaluated by flow cytometry and immunofluorescence. The presence of fetal microchimerism among the isolated cells was also determined by the presence of SRY gene. They were also differentiated into adipocytes and osteoblasts. The results showed that a remarkable number of cells expressed the mesenchymal stem cell (MSC) markers such as CD90, CD44, CD271, and CD146. A subpopulation of the human breast milk-derived cells (HBMDC) also expressed the embryonic stem cell markers, such as TRA 60-1, Oct4, Nanog and Sox2 but not SSEA1 or 4. The frequencies of the cells which expressed the endothelial, hematopoietic cell markers were negligible. SRY gene was not detected in the breast milk isolated cells. A subpopulation of the cells also expressed cytokeratin 18, the marker of luminal mammary epithelial cells. These cells showed the capability to differentiate into adipocytes and osteoblasts. In conclusion, these finding highlighted the presence of cells with various sources in the breast milk. Different stem cells including MSCs or embryonic stem cell-like cell along with the exfoliated cells from luminal epithelial cells were found among the isolated cells. The breast milk-derived stem cells might be considered as a non-invasive source of the stem cells for therapeutic purpose.


Assuntos
Células-Tronco Mesenquimais/citologia , Leite Humano/citologia , Adipócitos/fisiologia , Adulto , Diferenciação Celular , Separação Celular/métodos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Citometria de Fluxo , Humanos , Glândulas Mamárias Humanas/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA