Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 12(1): 6967, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845227

RESUMO

Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ERα + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ERα-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ERα + breast cancer models. The ERα + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ERα is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ERα signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ERα phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mecanotransdução Celular/genética , Transcriptoma , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cinamatos/farmacologia , Colágeno/química , Colágeno/farmacologia , Combinação de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Indazóis/farmacologia , Laminina/química , Laminina/farmacologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Fenótipo , Proteoglicanas/química , Proteoglicanas/farmacologia , Tamoxifeno/farmacologia , Técnicas de Cultura de Tecidos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Sci Rep ; 7(1): 3414, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611383

RESUMO

Conformational activation of integrins is generally required for ligand binding and cellular signalling. However, we have previously reported that the nonactivated conformation of α2ß1 integrin can also bind to large ligands, such as human echovirus 1. In this study, we show that the interaction between the nonactivated integrin and a ligand resulted in the activation of focal adhesion kinase (FAK) in a protein kinase C dependent manner. A loss-of-function mutation, α2E336A, in the α2-integrin did not prevent the activation of FAK, nor did EDTA-mediated inactivation of the integrin. Full FAK activation was observed, since phosphorylation was not only confirmed in residue Y397, but also in residues Y576/7. Furthermore, initiation of downstream signaling by paxillin phosphorylation in residue Y118 was evident, even though this activation was transient by nature, probably due to the lack of talin involvement in FAK activation and the absence of vinculin in the adhesion complexes formed by the nonactivated integrins. Altogether these results indicate that the nonactivated integrins can induce cellular signaling, but the outcome of the signaling differs from conventional integrin signaling.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina alfa2beta1/metabolismo , Transdução de Sinais , Células HeLa , Humanos , Integrina alfa2beta1/química , Conformação Proteica
3.
Int J Biochem Cell Biol ; 78: 22-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27373681

RESUMO

Phorbol diester PMA (phorbol 12-myristate 13-acetate) is a well-known promoter of tumor progression. PMA also regulates cell adhesion by several mechanisms including conformational activation of integrins and integrin clustering. Here, PMA was shown to induce lamellipodia formation and reorganization of the adhesion sites as well as actin and vimentin filaments independently of integrin preactivation. To further analyze the mechanism of PMA action, the protein composition in the α1ß1 integrin/collagen IV adhesion sites was analyzed by mass spectrometry and proteomics. In four independent experiments we observed the reduced recruitment of vimentin in relation to integrin α1 subunit. This was in full agreement with the fact that we also detected the retraction of vimentin from cell adhesions by confocal microscopy. Furthermore, the accumulation of kindlin-2 into cell adhesions was significantly increased after PMA treatment. Kindlin-2 siRNA inhibited cell spreading as well as the formation of actin fibrils and cell adhesions, but did not prevent the effect of PMA on lamellipodia formation. Thus, kindlin-2 recruitment was considered to be a consequence rather than the primary cause for the loss of connection between vimentin and the adhesion sites.


Assuntos
Adesão Celular/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Vimentina/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular , Cricetinae , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Integrina alfa1beta1/metabolismo , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo
4.
Exp Cell Res ; 342(2): 113-24, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26934497

RESUMO

The ability of cells to migrate and form metastases is one of the fatal hallmarks of cancer that can be conquered only with better understanding of the molecules and regulatory mechanisms involved. The oncogenic PIM kinases have been shown to support cancer cell survival and motility, but the PIM-regulated pathways stimulating cell migration and invasion are less well characterized than those affecting cell survival. Here we have identified the glycogen synthase kinase 3ß (GSK3B) and the forkhead box P3 (FOXP3) transcription factor as direct PIM targets, whose tumour-suppressive effects in prostate cancer cells are inhibited by PIM-induced phosphorylation, resulting in increased cell migration. Targeting GSK3B is also essential for the observed PIM-enhanced expression of the prostaglandin-endoperoxide synthase 2 (PTGS2), which is an important regulator of both cell migration and adhesion. Accordingly, selective inhibition of PIM activity not only reduces cell migration, but also affects integrin-mediated cell adhesion. Taken together, these data provide novel mechanistic insights on how and why patients with metastatic prostate cancer may benefit from therapies targeting PIM kinases, and how such approaches may also be applicable to inflammatory conditions.


Assuntos
Adenocarcinoma/enzimologia , Movimento Celular , Neoplasias da Próstata/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Adenocarcinoma/patologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/patologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais
5.
J Biol Chem ; 287(53): 44694-702, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23132859

RESUMO

The interaction between α2ß1 integrin (GPIa/IIa, VLA-2) and vascular collagen is one of the initiating events in thrombus formation. Here, we describe two structurally similar sulfonamide derivatives, BTT-3033 and BTT-3034, and show that, under static conditions, they have an almost identical effect on α2-expressing CHO cell adhesion to collagen I, but only BTT-3033 blocks platelet attachment under flow (90 dynes/cm(2)). Differential scanning fluorimetry showed that both molecules bind to the α2I domain of the recombinant α2 subunit. To further study integrin binding mechanism(s) of the two sulfonamides, we created an α2 Y285F mutant containing a substitution near the metal ion-dependent adhesion site motif in the α2I domain. The action of BTT-3033, unlike that of BTT-3034, was dependent on Tyr-285. In static conditions BTT-3034, but not BTT-3033, inhibited collagen binding by an α2 variant carrying a conformationally activating E318W mutation. Conversely, in under flow conditions (90 dynes/cm(2)) BTT-3033, but not BTT-3034, inhibited collagen binding by an α2 variant expressing E336A loss-of-function mutation. Thus, the binding sites for BTT-3033 and BTT-3034 are differentially available in distinct integrin conformations. Therefore, these sulfonamides can be used to study the biological role of different functional stages of α2ß1. Furthermore, only the inhibitor that recognized the non-activated conformation of α2ß1 integrin under shear stress conditions effectively blocked platelet adhesion, suggesting that the initial interaction between integrin and collagen takes place prior to receptor activation.


Assuntos
Colágeno Tipo I/metabolismo , Integrina alfa2beta1/antagonistas & inibidores , Integrina alfa2beta1/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Sulfonamidas/metabolismo , Animais , Plaquetas/química , Plaquetas/citologia , Plaquetas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Integrina alfa2beta1/genética , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Glicoproteínas da Membrana de Plaquetas/genética , Ligação Proteica/efeitos dos fármacos , Estresse Mecânico , Sulfonamidas/farmacologia
6.
EMBO J ; 29(1): 196-208, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19927126

RESUMO

Conformational activation increases the affinity of integrins to their ligands. On ligand binding, further changes in integrin conformation elicit cellular signalling. Unlike any of the natural ligands of alpha2beta1 integrin, human echovirus 1 (EV1) seemed to bind more avidly a 'closed' than an activated 'open' form of the alpha2I domain. Furthermore, a mutation E336A in the alpha2 subunit, which inactivated alpha2beta1 as a collagen receptor, enhanced alpha2beta1 binding to EV1. Thus, EV1 seems to recognize an inactive integrin, and not even the virus binding could trigger the conformational activation of alpha2beta1. This was supported by the fact that the integrin clustering by EV1 did not activate the p38 MAP kinase pathway, a signalling pathway that was shown to be dependent on E336-related conformational changes in alpha2beta1. Furthermore, the mutation E336A did neither prevent EV1 induced and alpha2beta1 mediated protein kinase C activation nor EV1 internalization. Thus, in its entry strategy EV1 seems to rely on the activation of signalling pathways that are dependent on alpha2beta1 clustering, but do not require the conformational regulation of the receptor.


Assuntos
Enterovirus Humano B/fisiologia , Enterovirus Humano B/patogenicidade , Integrina alfa2beta1/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Humanos , Técnicas In Vitro , Integrina alfa2beta1/química , Integrina alfa2beta1/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA